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L’autocorrélation spatiale
Présentation

Compte tenu du caractère inégalitaire de nombreuses distributions, des ob-
jets géographiques se ressemblent plus que d’autres. Une question d’analyse
spatiale que l’on est alors en droit de se poser est la suivante :

Est-ce que les objets géographiques qui sont proches se ressemblent plus
que les objets géographiques qui sont éloignés ? C’est la question de

l’autocorrélation spatiale.

Mesurer l’autocorrélation spatiale d’un phénomène (d’une distribution) re-
vient à déterminer s’il semble exister une organisation spatiale sous-jacente
à ce phénomène (à cette distribution) et donc qu’il (qu’elle) ne se repartit
pas de façon aléatoire au sein du territoire étudié.

Par exemple : Les personnes riches se regroupent-elles ? Les communes très
peuplées côtoient-elles des communes très peu peuplées ?
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L’autocorrélation spatiale
Présentation
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L’autocorrélation spatiale
Présentation : aléatoire ou pas
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L’autocorrélation spatiale
Présentation statistique

Les coefficients d’autocorrélation spatiale sont alors construits statistique-
ment de telle manière qu’il soit possible de répondre à la question suivante :

La variation d’un caractère entre unités voisines (proches) est-elle plus ou
moins grande que la variation de ce même caractère pour l’ensemble du

territoire ou plus précisément entre unités non-voisines (éloignées) ?

Il convient dès lors de définir ce qui est proche, de définir ce qui est voisin.
Le plus simple est de le déterminer de manière binaire en s’appuyant par
exemple sur la notion de contiguïté.

Il existe plusieurs indicateurs pour mesurer l’autocorrélation spatiale. Les
deux principaux, c’est-à-dire les plus couramment utilisés, sont les indices
de Moran et de Geary.
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L’autocorrélation spatiale
La contiguïté
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L’autocorrélation spatiale
La distance

Comme on travaille souvent avec des entités géographiques zonales, on
passera souvent par les centroïdes pour évaluer la proximité, ici les trois
entités sont alors équidistantes.
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L’autocorrélation spatiale
La distance

A partir de ces centroïdes, on peut alors créer des graphes de voisinage
fondés sur la distance, par exemple au plus proche voisin.
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L’autocorrélation spatiale
Contiguïté Vs Distance
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L’autocorrélation spatiale
Les indices de Moran et Geary

G = N − 1
2L ×

∑
i ,j lij × (Xi − Xj)2∑

i (Xi − X̄ )2

Les valeurs de l’indice de Geary s’étendent de 0 à 2. La valeur 1 signifie
qu’aucune autocorrélation spatiale n’est présente dans les mesures effec-
tuées. Une valeur plus petite que 1 signifie une autocorrélation spatiale
positive.

I = N
L ×

∑
i ,j lij × (Xi − X̄ )× (Xj − X̄ )∑

i (Xi − X̄ )2

Les valeurs de l’indice de Moran s’étendent de -1 (corrélation négative) à
+1 (corrélation positive). Une valeur nulle correspond à un modèle spatial
parfaitement aléatoire.
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L’autocorrélation spatiale
Exemple Geary
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L’autocorrélation spatiale
Exemple Geary

X̄ = (−2−1+0+2+1)
5 = 0∑

i (Xi − X̄ )2 = (−2)2 + (−1)2 + (0)2 + (1)2 + (2)2 = 10

N = 5 et L = 10

G = (5−1)×22
2×10×10 = 0, 44
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L’autocorrélation spatiale
Exemple Moran : Le diagramme de Moran

Derrière sa formulation mathématique qui peut paraitre peu intuitive, l’in-
dice de Moran revient simplement à mesurer la pente de la relation linéaire
entre les valeurs prises par les entités géographiques et leurs entités voisines
ou proches (en prenant pour celles-ci une valeur moyenne). Le diagramme
de Moran est alors fondamental.
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L’autocorrélation spatiale
Exemple Moran : Le diagramme de Moran

On aura tendance à présenter le diagramme de Moran avec des valeurs
standardisées et les moyennes correspondantes.
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L’autocorrélation spatiale
Exemple Moran : Le diagramme de Moran
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L’autocorrélation spatiale
Une variante du diagramme de Moran : le semi-variogramme

Une manière a priori plus intuitive d’entrevoir l’autocorrélation spatiale est
simplement d’étudier pour chaque paire de lieux la variation de la variable
en fonction de la distance. On obtient alors une nuée variographique géné-
ralement peu lisible qu’il convient de résumer.
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L’autocorrélation spatiale
Une variante du diagramme de Moran : le semi-variogramme

Pour résumer cette nuée variographique, on retient la moyenne d’une classe
de distance : c’est le semi-variogramme ou variogramme expérimental.
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L’autocorrélation spatiale
Une variante du diagramme de Moran : le semi-variogramme

Pour résumer davantage ce variogramme expérimental, on peut chercher
à l’approximer par une fonction mathématique qui tente de reproduire sa
portée et l’effet de pépite : c’est le variogramme théorique.
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L’autocorrélation spatiale
Aléatoire ou pas : la p-value

La p-value calcule la probabilité que la valeur d’autocorrélation soit obtenue
par une distribution aléatoire de la variable étudiée.
Il existe deux manières de calculer la p-value : de manière analytique ou par
simulation (des permutations).

999 permutations et une valeur de i = 0.289
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L’autocorrélation spatiale
Aléatoire ou pas : la p-value

Attention, il ne faut pas confondre p-value et z-value.

La z-value est une valeur qui peut être comparée à d’autres z-value, contrai-
rement au i de Moran qui ne sont pas comparables.

Elle est dépendante de la manière dont on calcule la p-value...
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L’autocorrélation spatiale
La pondération spatiale

La mesure de l’auto-corrélation spatiale requiert une précaution essentielle,
ne pas accorder trop d’importance à des entités géographiques qui auraient
plus de voisins que les autres.

En effet, à partir des graphes de voisinage il est facile de produire une
matrice de poids. Néanmoins, la somme de chaque ligne traduit alors l’im-
portance accordée à chaque entité. Une matrice de poids devra toujours être
normalisée.

Serge Lhomme Statistique spatiale 24 / 85



L’autocorrélation spatiale
Normalisation de la matrice de poids

Il existe alors plusieurs méthodes de normalisation :
Normalisation en ligne (schéma de codage "W") : pour une zone, le
poids accordé à chaque voisin est divisé par la somme des poids de ses
voisins. Cette standardisation facilite l’interprétation de la matrice de
poids, puisqu’in fine on obtient la moyenne de la variable x calculée sur
tous les voisins de l’observation i.
Normalisation globale (schéma de codage "C") : les poids sont stan-
dardisés de sorte que la somme de tous les poids soit égale au nombre
total d’entités.
Normalisation par stabilisation de la variance (schéma de codage "S") :
elle permet de réduire l’hétérogénéité dans les poids liée aux différences
de taille et de nombre de voisins entre les zones. En effet, la normalisa-
tion en ligne donne plus de poids aux observations situées en bordure
de la zone d’étude, avec un faible nombre de voisins.
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L’autocorrélation spatiale
L’autocorrélation spatiale locale : les LISA

Les statistiques globales font l’hypothèse de stationnarité du processus spa-
tial : l’autocorrélation spatiale serait la même dans tout l’espace. Or, cette
hypothèse est d’autant moins réaliste que le nombre d’observations est élevé.
Les données spatiales sont souvent caractérisées par de l’hétérogénéité spa-
tiale.

Le diagramme de Moran montre même qu’il existe des endroits où l’autocor-
rélation aurait tendance à être négative alors même que la tendance globale
est positive et inversement.

Deux questions se posent alors : Comment mesurer une valeur d’autocorré-
lation spatiale locale ? Ces valeurs sont-elles significatives ?

Pour chaque observation, ces indicateurs indiquent l’intensité du regroupe-
ment de valeurs similaires (ou de tendance opposée) autour de cette obser-
vation et la somme des indices locaux sur l’ensemble des observations doit
être proportionnelle à l’indice global correspondant.
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L’autocorrélation spatiale
L’autocorrélation spatiale locale : les LISA

Concrètement, il est possible pour chaque lieu de calculer uniquement le
numérateur de l’indicateur de Moran pour le décliner localement.

Ii > 0 indique un regroupement de valeurs similaires (plus élevées ou plus
faibles que la moyenne). Ii < 0 indique un regroupement de valeurs dissimi-
laires (des valeurs élevées entourées de valeurs faibles).

I = N
L ×

∑
i
∑

j lij × (Xi − X̄ )× (Xj − X̄ )∑
i (Xi − X̄ )2

Ii = (Xi − X̄ )
∑

j
lij × (Xj − X̄ )

Attention au calcul de la p-value
S’il y a 100 indices d’autocorrélation spatiale locaux, on multiplie par 100
le risque d’en détecter au moins un significatif à tort. Différentes méthodes
ont été développées pour éviter cette inflation du risque α.
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L’autocorrélation spatiale
L’autocorrélation spatiale locale : les LISA
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L’autocorrélation spatiale
Exemple sortie R Moran
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L’autocorrélation spatiale
L’autocorrélation spatiale locale : Getis and Ord

L’indice de Getis-Ord est un autre moyen simple de détecter des clusters de
valeurs fortes (hot spot) ou faibles (cold spot).

Pour cela, cet indice va simplement rapporter pour chaque observation, la
valeur moyenne dans le voisinage à la somme des valeurs totales.

Une fois standardisée en un Z-score les valeurs négatives pourront être consi-
dérées comme des cold spot (notamment celles inférieures à 1,96) et les va-
leurs positives comme des hot spot (notamment celles supérieures à 1,96).

Cet indice présente l’inconvénient de ne pas détecter l’autocorrélation spa-
tiale négative.

Cet indice est globalement moins robuste que les i locaux (LISA).
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Régression spatiale, régression géographiquement pondérée
Les MCO remise en question par l’autocorrélation spatiale

L’autocorrélation spatiale resterait un simple outil de géographes si elle
n’avait pas d’incidences pratiques. Or celle-ci remet justement en cause des
méthodes couramment utilisées en économétrie ou pour faire de l’analyse
territoriale. Elle remet notamment en question les régressions linéaires.

En effet la dépendance spatiale des observations peut se traduire soit par
une perte d’efficacité des MCO, soit par des estimateurs biaisés.

Pour effectuer une régression linéaire certaines propriétés doivent être res-
pectées : la normalité du terme d’erreur (distribution des erreurs) et l’indé-
pendance des erreurs (graphique valeurs-résidus).

Or la dépendance spatiale des variables étudiées peut remettre en cause l’in-
dépendance des erreurs. Il convient alors de tester l’autocorrélation spatiale
des résidus. Si cette autocorrélation existe, la significativité des coefficients
peut être remise en cause (elle est surestimée), car la redondance d’infor-
mations conduit à sous-estimer la variance calculée.
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Régression spatiale, régression géographiquement pondérée
Les autres écueils des MCO

Pour traiter la question de la dépendance spatiale, on pourra utiliser les
régressions spatiales. Néanmoins, la régression linéaire est aussi confrontée
à trois autres spécificités des données en géographie :

l’hétérogénéité spatiale (les phénomènes et les observations varient
selon les lieux) ;
les problèmes d’échelle et de zonage (les données peuvent être
agrégées de différentes manières) ;
et les effets de contexte (les observations dépendent des différents
niveaux).

Pour étudier l’hétérogénéité spatiale, on pourra utiliser les régressions géo-
graphiquement pondérées. Pour les effets de contexte, il existe les régressions
multiniveau.
Les problèmes d’échelle et de zonage (modifiable areal unit problem) restent
ouverts, comme la prise en compte de toutes ces spécificités conjointement.
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Régression spatiale, régression géographiquement pondérée
Les autres écueils des MCO
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Régression spatiale, régression géographiquement pondérée
Les autres écueils des MCO
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Régression spatiale, régression géographiquement pondérée
Régression spatiale

Il existe au moins autant de modèles de régression spatiale que de types
d’interaction spatiale. On distingue :

les interactions endogènes, lorsque la valeur d’une variable dans une
zone géographique donnée dépend des valeurs de ses voisines (autoc-
corélation spatiale, modèle autoregressif).
les interactions exogènes, lorsque la variable étudiée dans une zone géo-
graphique dépend d’autres caractéristiques observables dans les zones
géographiques voisines.
une corrélation spatiale des erreurs liée à des caractéristiques inobser-
vées, ignorées, négligées.

La prise en compte de ces interactions, complexifie énormément le modèle
de régression, c’est le modèle de Mansky :

Y = aX + ε

Y = aX + cWijX + dWijY + eWiju + ε
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Régression spatiale, régression géographiquement pondérée
Régression spatiale

Comme il est impossible d’estimer tous les paramètres du modèle général
sans qu’ils soient biaisés, puisqu’il est difficile d’identifier ce qui relève de tel
ou tel type d’interaction (il y a des effets de pairs), il convient généralement
de limiter celui-ci en considérant certains paramètres = 0.

Le plus intuitif est de considérer e = 0. C’est le modèle de référence, le
modèle de Durbin (SDM). Une alternative à ce modèle consiste à négliger
les interactions exogènes c = 0 pour éviter d’avoir trop de paramètres à
calculer, c’est le modèle Spatial Autoregressive Confused (SAC), parfois
appelé Kelejian-Prucha.

Y = aX + cWijX + dWijY + ε (SDM)

Y = aX + dWijY + eWiju + ε (SAC)
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Régression spatiale, régression géographiquement pondérée
Régression spatiale

Néanmoins les modèles les plus simples à appréhender sont ceux qui ne
tiennent compte que d’un seul type d’interaction. d 6= 0 correspond au
modèle spatial autoregressif (SAR), e 6= 0 correspond au modèle à erreur
autocorrélé spatialement (SEM).

Y = aX + dWijY + ε (SAR)

Y = aX + eWiju + ε (SEM)

Enfin d’autres modèles existent correspondant à d’autres combinaisons de
paramètres retenus.

L’interprétation des coefficients est plus complexe que lors d’une simple
régression linéaire. Il est possible d’avoir recours à des méthodes pour en
simplifier l’interprétation. On utilisera le critère d’information d’Akaike (AIC)
pour estimer la précision du modèle (on cherche les valeurs les plus faibles)
qui avantage les modèles parcimonieux.
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Régression spatiale, régression géographiquement pondérée
Régression spatiale : exemple
Par exemple, une étude sur la ville de Columbus conclura à l’existence d’un
lien significatif négatif entre le nombre de cambriolages et de vols de vé-
hicule au sein de ses quartiers (CRIME) et des variables comme la valeur
moyenne des logements des quartiers (HOVAL) et le revenu moyen des mé-
nages (INC).
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Régression spatiale, régression géographiquement pondérée
Régression spatiale : exemple

Néanmoins, une étude de l’autocorrélation spatiale des résidus remet en
question la régression effectuée, la significativité pourrait être surestimée.
Des modèles spatiaux doivent être privilégiés.
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Régression spatiale, régression géographiquement pondérée
Régression spatiale : exemple
L’application du modèle SAR, parfois appelé modèle de décalage spatial
(LAG), permet de s’affranchir de l’autocorrélation spatiale des résidus. La
significativité de Rho (d) confirme qu’il fallait utiliser un modèle spatial. La
significativité des deux variables est confirmée.
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Régression spatiale, régression géographiquement pondérée
Régression spatiale : exemple

On peut comparer les résultats de différents modèles, ici ceux obtenus avec
le modèle SEM qui se révèlent moins bons (voir AIC), mais confirment le
modèle SAR.
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Régression spatiale, régression géographiquement pondérée
Régression géographiquement pondérée

Les relations entre les variables étudiées peuvent varier dans l’espace. Or, les
régressions présentées jusqu’à maintenant donnent une valeur globale pour
l’ensemble du territoire étudié et il serait intéressant d’avoir des mesures de
cette variation dans l’espace à l’image de l’autocorrélation spatiale locale.

Pour cela, la régression géographiquement pondérée propose de calculer un
modèle de régression propre à chaque entité géographique en se fondant sur
les valeurs voisines (proches) et non sur l’ensemble des données.

On aura autant de coefficients de corrélation et de régression que d’entités
géographiques.

De nouveau, il faudra définir le voisinage, souvent par une fenêtre limite
(une bande passante), et la matrice de poids correspondante : Gaussienne,
Boxcar, Exponentielle, Bicarrée. On parle de noyau (kernel).

Le noyau peut être fixe, mais on préférera souvent un noyau adaptatif.
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Régression spatiale, régression géographiquement pondérée
Régression géographiquement pondérée
Une régression classique conclura que le logarithme des prix des maisons
augmente globalement de 0,96% par mètre carré à Nantes. En fait, cette
valeur varie dans l’espace.
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Analyse de semis de points
Présentation

Cette partie traite de la répartition d’ensemble de lieux qui correspondent
aux différentes localisations d’un phénomène.

Ces lieux peuvent être des habitations, des commerces, des personnes, des
clients...

Ces lieux peuvent être traités comme des points à un certain degré de
généralisation. On parlera donc de semis de points.

Pour comparer des semis de points ou pour mettre en exergue certaines de
leurs spécificités, on va être amené à étudier leur forme.

Dans ces analyses, l’espace est souvent considéré comme homogène.

L’avantage de travailler avec des méthodes adaptées à des données ponc-
tuelles (individuelles), c’est qu’elles ne sont en théorie pas sensibles aux
problèmes d’échelle.
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Analyse de semis de points
Présentation
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Analyse de semis de points
Identifier le centre d’un semis de points : la position moyenne

Le point moyen :

X̄ = 1
N ×

N∑
i=1

Xi et Ȳ = 1
N ×

N∑
i=1

Yi

Le point moyen pondéré :

X̄p =

N∑
i=1

(Pi × Xi )

N∑
i=1

Pi

et Ȳp =

N∑
i=1

(Pi × Yi )

N∑
i=1

Pi
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Analyse de semis de points
Identifier le centre d’un semis de points : la position moyenne
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Analyse de semis de points
Mesurer la dispersion d’un semis de points

Ayant déterminé le point moyen, on peut chercher à mesurer la dispersion
des lieux autour de ce point central. On parle de distance-type :

σD =

√√√√ 1
N

N∑
i=1

(Xi − X̄ )2 + (Yi − Ȳ )2 =
√
σ2

X + σ2
Y
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Analyse de semis de points
Mesurer la concentration d’un semis de points
Une distribution est aléatoire si :

1 Tous les emplacements de l’espace ont la même probabilité d’ac-
cueillir un point.

2 La position d’un nouveau point est indépendante de la position des
points précédents.

Une distribution aura tendance à être concentrée si :
1 Certains emplacements de l’espace ont plus de chances d’accueillir

un point.
2 La localisation d’un premier point favorise l’apparition d’autres points

à proximité.
Une distribution aura tendance à être régulière si :

1 Tous les emplacements de l’espace ont la même probabilité d’ac-
cueillir un point

2 La localisation d’un premier point défavorise l’apparition d’autres
points à proximité.
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Analyse de semis de points
Mesurer la concentration d’un semis de points

La méthode des quadrats permet de mesurer des concentrations (des
densités) dans un semis de points :

1 Soit un semis de N points distribués sur un espace E.
2 On recouvre l’espace E d’un ensemble de K mailles d’une forme

régulière (carré, rectangle, cercle).
3 Le nombre moyen de points théorique par maille est égale à D=N/K.
4 On associe à chaque maille i le nombre de points qu’elle contient,

puis on calcule la variance du nombre de points par maille V(D) et
on en déduit un indice de concentration(Ic). IC=V(D)/D.

Si IC = 1, la distribution est aléatoire.

IC > 1, la distribution est plutôt concentrée.

IC < 1, la distribution est plutôt régulière.
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Analyse de semis de points
Mesurer la concentration d’un semis de points

Attention
Cette méthode est sensible au MAUP !
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Analyse de semis de points
Mesurer la concentration d’un semis de points
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Analyse de semis de points
Mesurer la concentration d’un semis de points
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Analyse de semis de points
Mesurer la forme d’un semis de points

La méthode du plus proche voisin permet aussi d’étudier la dispersion,
donc la forme d’un semis de points.

1 Soit un semis de N points distribués sur un espace de surface S. On
note D la densité moyenne de points par unité de surface (D=N/S).

2 On calcule pour chaque point i la distance Dmin(i) qui le sépare de
son voisin le plus proche.

3 On calcule ensuite la moyenne des distances observées au plus proche
voisin D0.

4 On détermine la distance théorique moyenne au plus proche voisin DT
dans le cas d’une distribution aléatoire (DT=0.5/

√
D).

5 On calcule l’indice de dispersion qui est le rapport : R=D0/DT.
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Analyse de semis de points
Mesurer la forme d’un semis de points
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Analyse de semis de points
Mesurer la forme d’un semis de points
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Analyse de semis de points
Mesurer la forme d’un semis de points
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Analyse de semis de points
Mesurer la forme d’un semis de points

D0 = 0.99

Comme la surface est égale 64 et l’effectif est égal à 24, on obtient une
densité de 0,375 et par conséquent DT = 0.816

R = D0/DT = 1,22
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Analyse de semis de points
Analyser la configuration d’un semis de points : la fonction K de Ripley

Les valeurs synthétiques précédentes peuvent masquer des phénomènes plus
complexes.

C’est pourquoi on préfère généralement utiliser la fonction K de Ripley qui
permet des analyses plus qualitatives, sans biais d’échelle et relativement
exhaustives.

La fonction K(r) de Ripley est une fonction cumulative qui calcule simple-
ment le nombre moyen de voisins de chaque point situés à une distance
inférieure à r.

Ce nombre moyen est standardisé par l’intensité du processus (la densité n
/ W où W est l’aire étudiée).

Il convient ensuite de comparer cette fonction standardisée avec celle d’une
distribution aléatoire (un processus de Poisson) homogène. Cette fonction
est simplement égale à πr2.
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Analyse de semis de points
Analyser la configuration d’un semis de points : la fonction K de Ripley

La technique la plus courante pour tester la significativité des valeurs obte-
nues est le recours à la simulation d’un intervalle de confiance par la méthode
de Monte Carlo.
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Analyse de semis de points
Analyser la configuration d’un semis de points : la fonction K de Ripley

Il existe de nombreuses variantes à la fonction de Ripley comme par exemple
la fonction L de Besag (qui permet de comparer les différentes valeurs de
la fonction en rapportant notamment K par π) et la fonction D de Diggle
notamment (qui compare la fonction K à des processus non-homogènes).
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Analyse de semis de points
M de Marcon et Puech et fonction intertype

L’indicateur M de Marcon et Puech est un indicateur cumulatif relatif qui
va comparer la proportion de points d’intérêt dans un voisinage à celle que
l’on observe sur l’ensemble du territoire analysé.

L’intérêt d’une approche relative, c’est qu’elle peut facilement être appliqué
à deux types de configuration de points en comparant une proportion locale
à une proportion globale mais où le type de points voisins d’intérêt n’est pas
le même type que celui des points centre.

Par exemple, si nous suspectons une attraction des points de type T par
ceux de type S, nous allons comparer la proportion locale de voisins du type
T autour de points du type S à la proportion globale observée sur tout le
territoire considéré.

Si l’attraction entre les points de type T autour de type S est réelle, la pro-
portion de points de type T autour de ceux du type S devrait être localement
plus importante que celle observée sur toute l’aire d’étude.
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Analyse de semis de points
Attention aux effets de bord de la fenêtre d’observation

Généralement, quel que soit le domaine d’application, ce biais potentiel est
jugé suffisamment sévère pour que l’on recoure à une technique correctrice
prenant en compte les "effets de bord". On a pour cela souvent recours à
du lissage spatial...
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Interpolation spatiale et lissage spatial
Présentation
L’interpolation spatiale consiste à estimer des valeurs en différents points
de l’espace à partir de valeurs connues en un nombre limité de points. Cette
technique est essentiellement utilisée pour modéliser des phénomènes phy-
siques continus (en climatologie, géophysique...).

Elle peut néanmoins être utilisée dans le domaine du géomarketing dans le
but de compléter des données manquantes, voire pour simplifier un phéno-
mène et ainsi dégager des tendances nettes. Ce dernier point la rapproche
du lissage spatial.

Le lissage spatial consiste précisément à filtrer l’information pour révéler des
structures spatiales sous-jacentes et régionaliser l’information. Mathémati-
quement et historiquement, c’est une fonction d’intensité d’un phénomène.

Combiner interpolation spatiale et lissage spatial permet souvent de s’af-
franchir des problèmes de maillage en ramenant les phénomènes à des grilles
régulières d’une certaine résolution qui pourront être par la suite facilement
combinées.
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Interpolation spatiale et lissage spatial
Lissage spatial

Le principe du lissage spatial est de représenter non pas la valeur observée
en un point, mais une moyenne pondérée des valeurs observées au voisinage
de ce point dans un rayon prédéfini.

Une fois encore se posera les questions de bande passante, de fonction
du noyau pour produire la matrice de poids. En effet, dans cette moyenne
pondérée on tiendra davantage compte des lieux les plus proches.

Ici le choix du noyau importe peu, en revanche la taille de la bande passante
est primordiale.

Un rayon élevé conduit à une densité très lissée, avec un biais élevé. Un
petit rayon génère une densité peu lissée avec une forte variance.

Plusieurs méthodes proposent de calculer une bande passante "optimale"
selon différents critères. L’objectif est généralement de minimiser une mesure
d’erreur.
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Interpolation spatiale et lissage spatial
Lissage spatial

Les limites du lissage spatial
Derrière la qualité esthétique des cartes lissées se cache néanmoins un piège
majeur. Par construction, les méthodes de lissage atténuent les ruptures
et les frontières et induisent des représentations continues des phénomènes
géographiques.

Les cartes lissées font donc apparaître localement de l’autocorrélation spa-
tiale. Deux points proches par rapport au rayon de lissage ont mécanique-
ment des caractéristiques comparables dans ce type d’analyse.

De ce fait, commenter à partir d’une carte lissée des phénomènes géogra-
phiques dont l’ampleur spatiale est de l’ordre du rayon de lissage n’a guère
de sens.
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Interpolation spatiale et lissage spatial
Lissage spatial
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Interpolation spatiale et lissage spatial
Interpolation spatiale : le krigeage

La frontière entre lissage spatial et interpolation spatiale est parfois ténue.
Elles peuvent servir par exemple à produire ce que l’on appelle des cartes de
chaleur, des cartes de densité (heatmap). La méthode de lissage présentée
correspond à la méthode barycentrique en matière d’interpolation.

Néanmoins, en théorie, l’interpolation spatiale doit être réservée à des phé-
nomènes continus et constitue la branche principale de la géostatitique. Le
résultat d’une interpolation sera toujours une grille régulière (raster).

La méthode phare de l’interpolation spatiale est le krigeage. Le terme de
krigeage est dû à Georges Matheron, et fait référence aux travaux pionniers
de Danie Krige, ingénieur sud-africain.

Le krigeage réalise l’interpolation spatiale d’une variable régionalisée par
calcul de l’espérance mathématique d’une variable aléatoire, utilisant l’in-
terprétation et la modélisation d’un variogramme expérimental.
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Interpolation spatiale et lissage spatial
Interpolation spatiale : le krigeage

C’est le meilleur estimateur linéaire non-biaisé. Il tient compte non seulement
de la distance entre les données et le point d’estimation, mais également
des distances entre les données deux-à-deux.

L’idée de base du krigeage est de prévoir la valeur de la variable régionalisée
étudiée en un site non échantillonné s0 par une combinaison linéaire de
données ponctuelles adjacentes.

Le modèle de base du krigeage a la même forme que les modèles de ré-
gression classique ou locale, mais les erreurs sont supposées dépendantes
spatialement. Le modèle requiert donc connaitre la dépendance spatiale du
phénomène.
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Quelques notions de R
Affectation et calcul

R fonctionne un peu comme une calculatrice. Si vous tapez 2 + 3, le logiciel
vous retournera la valeur 5. Néanmoins, on utilisera R davantage comme un
langage de programmation en suivant les principes de l’affectation informa-
tique.

Exemple d’affectation avec R
a <- 2
b <- 3
c <- a + b

L’affichage des résultats se fera alors en utilisant une fonction : « print() ».

Affichage d’une variable avec R
print(c)
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Quelques notions de R
Les types de données

Il existe de nombreux types de variables dans R.

Les variables de type texte
a <- "Texte"

Ces variables peuvent être ordonnées dans une liste (un vecteur) ou dans
plusieurs listes pour former une matrice (un tableau de valeurs).

Les vecteurs et les matrices
b <- c(18, 182, 1.5, 15, 200, 5)
c <- matrix(c (18, 182, 1.5, 15, 200, 5), nrow = 2)
d <- matrix(c (18, 182, 1.5, 15, 200, 5), ncol = 2)
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Quelques notions de R
Les types de données

Pour accéder à une valeur ou à un ensemble de valeurs, il faut utiliser les
index des vecteurs ou des matrices.

Accès aux valeurs des vecteurs et des matrices
e <- b[2] + b[3]
f <- c[1,2] + c[2,3]
col <- c[,1]
ligne <- c[1,]

Accès avancé aux valeurs des vecteurs et des matrices
e <- b[c(2,4)]
f <- c[(c<15)]
g <- b[2 :5]
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Quelques notions de R
Les types de données

Les data frames permettent de manipuler des tableaux bien structurés. Ce
type de données est particulièrement bien adapté aux importations de fichiers
textes.

Les Data Frames
articles <- c( "un", "le", "la", "les")
sujets <- c( "mot", "terme", "chose", "images")
dfmots <- data.frame(articles, sujets)
dfmots2 <- data.frame(col1 = articles, col2 = sujets)

Appel des valeurs des Data Frames
print(dfmots$sujets)
print(dfmots[,1])
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Quelques notions de R
L’import de données et premières fonctions

Importation de fichiers textes
MyTexte <- read.table(file="c :/TheData.csv", header=TRUE, sep=",")
MyData <- read.csv(file="c :/TheData.csv", header=TRUE, sep=",")
adresse <- file.choose()
MyData <- read.csv(file=adresse, header=TRUE, sep=",")

Fonctions de base
res <- summary(b)
plot(d[,1],d[,2])
hist(b)
reg <- lm(d[,1] ~d[,2])
res3 <- summary(reg)
t.test(d[,1], d[,2])
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Quelques notions de R
Les bibliothèques

Ce qui constitue la puissance de R, ce sont ses nombreuses bibliothèques
qu’il faut télécharger.

Les librairies cartographiques
library(rgdal)
nuts3 <- readOGR(dsn = adresse, layer = "nuts3", verbose = TRUE)
library(sp)
class(nuts3)
nuts3@proj4string
head(nuts3@data)
plot(nuts3[1, ], col = "#5C99AD", border = " #2A5F70", lwd = 4)
library(rgeos)
europeBuffer <- gBuffer(spgeom = europe, width = 50000)
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Introduction à R
Les boucles et la programmation

Enfin, comme tout langage de programmation, R permet de répéter les
mêmes instructions plusieurs fois en changeant seulement quelques para-
mètres. Ce sont les boucles. Ces boucles peuvent alors permettre d’effectuer
des tests. Ce sont par exemple les Si.

Les boucles
for (i in 1 :10) {

print(i)
}

for (i in 1 :10) {
if (i > 5 & i < 8) {

print(i)
}

}
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