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Introduction

Introduction
Les statistiques multivariées

Définition

En statistiques, les analyses multivariées ont pour caractéristique de
s’intéresser à la distribution conjointe de plusieurs variables. Les analyses
bivariées sont des cas particuliers à deux variables.

Les analyses multivariées sont très diverses selon l’objectif recherché ou la
nature des variables. On peut identifier deux grandes familles :

celle des méthodes descriptives visant à structurer et résumer
l’information ;
celle des méthodes explicatives visant à expliquer une ou des variables
dites "dépendantes" (variables à expliquer) par un ensemble de
variables dites "indépendantes" (variables explicatives).
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Corrélation et régression de variables quantitatives

Corrélation et régression
Définitions

Corrélation

Etudier la corrélation entre deux ou plusieurs variables, c’est mesurer
l’intensité de la liaison qui peut exister entre ces variables.

Régression

La régression est un ensemble de méthodes statistiques très utilisées
pour analyser la relation d’une variable par rapport à une ou plusieurs
autres. On cherche alors à retrouver (prédire) la variable à expliquer à
l’aide des autres variables.

Dans le cadre de corrélations et de régressions linéaires, on s’intéresse plus
particulièrement à des relations de type linéaire.
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Des graphiques plutôt que des définitions ou des calculs pour comprendre

Pour faire simple, lorsque l’on étudie deux variables quantitatives, on peut
produire un « nuage de points », une régression linéaire vise alors à résumer
ce nuage de points par une forme plus simple à interpréter indiquant la
« tendance générale » : une droite.
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Des graphiques plutôt que des définitions ou des calculs pour comprendre

C’est le coefficient de corrélation (R) ou le coefficient de détermination (R2)
qui nous permet de dire si cette régression est « juste », à quel point la droite
résume bien les variations du nuage de points :
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Des graphiques plutôt que des définitions ou des calculs pour comprendre

C’est le coefficient de corrélation ou le coefficient de détermination qui nous
permet de dire si cette régression est « juste », ou « pas du tout » :
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Equation

L’équation de la droite recherchée est de type linéaire :

Y = aX + b

Les coefficients de la droite de régression s’obtiennent alors avec les
équations suivantes :

a = Cov(x , y)
Var(x) =

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )

n∑
i=1

(Xi − X̄ )2
et b = ȳ − ax̄

Le coefficient de corrélation R (de Bravais-Pearson) :

R = Cor(X ,Y ) = Cov(X ,Y )
σX ×σY

(-1 ≤ R ≤ 1)
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Les résidus

Définition

Un résidu est dans une régression le terme qui n’est pas expliqué par la
ou les variables explicatives.

Il se calcule simplement en calculant l’écart entre la valeur réelle de y et la
valeur théorique (estimée, prédite) de y (obtenue à partir de l’équation
déterminée par la régression linéaire) :

Ŷi = aXi + b

ei = Yi − Ŷi

Yi = Ŷi + ei = aXi + b + ei
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Les résidus
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Les résidus
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
MCO : Méthode des moindres carrées ordinaires

Selon la méthode des moindres carrées (de Legendre et Gauss), la droite qui
décrit « le mieux » les données est celle qui minimise la somme quadratique
des résidus (des déviations des mesures aux prédictions).

yi − ȳ = ŷi − ȳ + ei

n∑
i

(yi − ȳ)2 =
n∑
i

(ŷi − ȳ)2 +
n∑
i

ei
2

SCT = SCE + SCR

R2 = SCE
SCT = 1− SCR

SCT

Ainsi, R2 peut être interprété comme la part (le pourcentage) de variance
expliquée par les valeurs obtenues par la droite de régression (0 ≤ R2 ≤ 1).
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Corrélation et régression de variables quantitatives

La significativité
Test T de Student

Dans les faits, il est important de savoir si les coefficients calculés sont
significativement différents de ce que l’on pourrait obtenir par hasard entre
deux variables aléatoires de même taille.

Pour le coefficient de corrélation, il faut comparer la valeur t obtenue avec
celle du tableau de Student pour n - 2 degrés de liberté :

t = r
σr

= r√
1− r2
n − 2
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Corrélation et régression de variables quantitatives

La significativité
La p-value

Si | t |> tseuil , on rejette l’hypothèse nulle pour le risque choisi
(classiquement 5%).
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Corrélation et régression de variables quantitatives

La significativité
La p-value

Plutôt que de comparer la statistique calculée avec le seuil théorique fourni
par la loi de Student, les logiciels proposent souvent la probabilité critique
(p-value) que l’on doit comparer au risque α que l’on s’est fixé. Si la p-value
est plus petite, alors nous rejetons l’hypothèse nulle.

La probabilité critique correspond au niveau de risque à partir duquel on ne
peut plus rejeter l’hypothèse nulle.

Très souvent la p-value est simplement interprétée comme la probabilité de
se tromper en rejetant l’hypothèse nulle.

De même des tests de significativité (Student) peuvent être effectués sur les
coefficients de la régression (les estimateurs) dont la robustesse (la qualité)
dépend notamment de la variation des variables explicatives. Les erreurs
types correspondantes permettent de déterminer des intervalles de confiance.
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Corrélation et régression de variables quantitatives

Régression non linéaire
Différentes formes de nuages de points
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Corrélation et régression de variables quantitatives

Régression non linéaire
Différentes formes de nuages de points

Serge Lhomme Statistique multivariée et Introduction à R 19 / 98



Corrélation et régression de variables quantitatives

Régression non linéaire
Kernel trick : Astuce du noyau

En apprentissage automatique, l’astuce du noyau (kernel tricks), est une mé-
thode qui permet d’utiliser un classifieur linéaire pour résoudre un problème
non linéaire.
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Corrélation et régression de variables quantitatives

Régression non linéaire
Kernel trick : Astuce du noyau

Pour des régressions, cela revient à utiliser des fonctions mathématiques
non-linéaires pour revenir à une situation linéaire.
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Corrélation et régression de variables quantitatives

Régression non linéaire
Détails de la transformation bi-logarithmique

P = K × n−α

⇒ log(P) = log(K × n−α)

⇒ log(P) = log(K ) + log(n−α)

⇒ log(P) = log(K )− α log(n)

⇒ log(P) = −α log(n) + log(K )

⇒ Y = −aX + b

Conclusion de la transformation bi-logarithmique

b = log(K )⇒ K = 10b

a = α
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Corrélation et régression de variables quantitatives

Régression non linéaire
Une astuce pas si simple à appliquer

Attention bidouille
Attention, le kernel trick est une "bidouille" et n’est pas totalement sans
impact sur les calculs.

Cette bidouille est très utilisée et il ne faut pas la dramatiser. Certes les es-
timateurs pourront alors être biaisés, mais cette méthode reste très efficace.

Difficile
Il est souvent très difficile de trouver les transformations mathématiques à
appliquer.
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Corrélation et régression de variables quantitatives

Régression linéaire multiple
Une simple généralisation d’une régression linéaire bivariée

Lorsque l’on cherche à expliquer un phénomène d’un point de vue statistique,
il est rare qu’une seule variable explicative soit suffisante. Un « modèle »né-
cessite ainsi souvent l’intégration de plusieurs variables.
Heureusement les méthodes de régression linéaire se généralisent très bien
à plusieurs variables. On parle de régression linéaire multiple. On tente alors
d’expliquer une variable Y par plusieurs variables explicatives Xi.
Si vous utilisez deux variables explicatives, votre nuage de points pourra être
représenté en trois dimensions et les méthodes de régression vous propose-
ront alors l’équation d’un plan pour représenter ce nuage...
Le calcul du R2 est strictement identique et donne en quelque sorte la
précision du modèle, la part de variance expliquée de la variable Y par la
combinaison linéaire des variables explicatives Xi.

Y = a1X1 + a2X2 + a3X3 + ...+ b

Serge Lhomme Statistique multivariée et Introduction à R 24 / 98



Corrélation et régression de variables quantitatives

Régression linéaire multiple
Une simple généralisation, mais quelques difficultés

La notion de corrélation reste « bivariée » et ne se généralise pas, mais
les coefficients des variables explicatives peuvent faire l’objet de tests de
significativité.

Il faut alors faire attention à la colinéarité entre les variables, c’est à dire
aux éventuelles corrélations entre les variables explicatives. Ainsi, en théorie,
une régression linéaire multiple doit s’accompagner d’études de corrélation
par paire (matrice des corrélations).

Ajouter des variables, même non significatives, contribue à améliorer le mo-
dèle explicatif en termes de R2. C’est pourquoi un modèle doit viser à rester
parcimonieux, en gardant uniquement des variables significatives.

Il existe aussi des alternatives au calcul du R2, comme le critère d’information
d’Akaike ou le critère d’information bayésien.
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Corrélation n’est pas causalité

Nombre de fautes d’orthographe en fonction de la pointure. Les élèves
ayant les plus grands pieds font moins de fautes...
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Paradoxe de Simpson et facteur confondant
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Corrélation et régression de variables quantitatives

Les pièges à éviter
L’erreur écologique

En géographie, l’étude des corrélations se fait à travers l’analyse d’un en-
semble de lieux, de territoires au sein desquels on a des agrégats.

Ainsi lorsque les variables décrivant ces lieux sont des attributs sociaux décri-
vant des habitants, il faut toujours faire attention au fait qu’une corrélation
établie au niveau des lieux n’implique pas forcément une corrélation au ni-
veau des individus.

Une étude menée au niveau des individus (sociologique) peut montrer que le
taux de criminalité est plus élevé chez les autochtones que chez les étrangers.
Pourtant, cette étude au niveau des quartiers (géographique) peut très bien
montrer une corrélation entre la proportion d’étrangers des quartiers et leur
taux de criminalité.

Il faut faire attention à ne pas « individualiser » une corrélation issue d’un
« agrégat ».
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Les points atypiques aberrants
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Les règles statistiques à respecter

Régression et corrélation s’appliquent en théorie uniquement à des variables
quantitatives continues.

Le test de Student classiquement associé au calcul de régression dans les
logiciels statistiques s’applique à des distributions normales.

Le test de Shapiro-Wilk permet de tester la normalité d’une distribution.

Les tests de corrélation de Kendall et de Spearman sont recommandés
lorsque les variables ne suivent pas une loi normale.

Les statistiques τ (tau) de kendall et ρ (rho) de Spearman sont respecti-
vement utilisées pour estimer des coefficients de corrélation fondés sur les
rangs.

Ce sont des tests statistiques dits robustes, car ils ne dépendent pas de la
distribution des données. Ils sont non paramétriques.
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Etudier différents graphiques des résidus pour éviter des erreurs

Hypothèses nombreuses à vérifier sur les erreurs : Distribution normale des
erreurs ; Indépendance des erreurs (attention à l’autocorrélation temporelle
ou spatiale) ; Exogénéité (variables explicatives non corrélées au terme d’er-
reur) ; Homoscédasticité (les termes d’erreurs sont supposés de variance
constante).

Serge Lhomme Statistique multivariée et Introduction à R 31 / 98



Corrélation et régression de variables quantitatives

Les pièges à éviter
Etudier différents graphiques des résidus pour éviter des erreurs
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Etudier différents graphiques des résidus pour éviter des erreurs
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Etudier différents graphiques des résidus pour éviter des erreurs
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Corrélation et régression de variables quantitatives

Les pièges à éviter
Les règles statistiques à respecter : Le quartet d’Anscombe
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Association et indépendance plutôt que corrélation

Lorsque l’on étudie des variables qualitatives, on comprend bien qu’il sera
difficile, voire impossible, de produire un nuage de points et par conséquent
de calculer des corrélations et des régressions linéaires.

Néanmoins, on peut aussi se dire qu’il faut quand même différencier les
variables qualitatives nominales, de celles qui sont ordinales.

On parlera davantage d’association, d’influence, de dépendance ou au contraire
d’indépendance dans le cas de variables qualitatives.

Entre deux variables qualitatives, il est par exemple possible de compter les
effectifs qui correspondent aux associations (conjonctions) possibles entre
les deux variables.

On parle de tableau de contingence. La notion de tableau croisé dynamique,
proposée par les tableurs, est une généralisation du tableau de contingence.
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Présentation

Les cases du tableau correspondent aux effectifs associés conjointement à
une modalité de X et une modalité de Y.

Toutes les modalités de X et de Y y sont représentées.

Il est possible de calculer les valeurs totales du tableau, en ligne et en
colonne, qui correspondent aux effectifs marginaux. La somme totale des
effectifs correspond à l’effectif global.

A partir des effectifs et des effectifs marginaux, il est possible de calculer
des proportions pour chaque ligne (profil en ligne) ou pour chaque colonne
(profil en colonne).

La lecture du tableau de contingence sur la base des profils est très ins-
tructive, mais en tant que statisticien, il convient de caractériser la force
du lien à l’aide d’indicateurs numériques et éventuellement tester si elle est
significative.
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Présentation
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Exemple
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Deux profils possibles : le profil en ligne
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Deux profils possibles : le profil en colonne
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Valeurs théoriques

Avec un tableau de contingence, on peut donc obtenir la valeur totale des
effectifs concernés. E = 11472.
On peut aussi obtenir la taille d’une modalité vis-à-vis des autres pour les
colonnes. ALIM = 1307 / 11472 = 0.11
On peut aussi obtenir la taille d’une modalité vis-à-vis des autres pour les
lignes. BULGARIE = 559 / 11472 = 0.05
Si l’on multiplie l’ensemble de ces valeurs, on obtient une valeur théorique,
qui correspond à ce que l’on pourrait obtenir si les deux variables étaient
indépendantes. 11472× 0.11× 0.05 = 63
Cette valeur correspond à ce que l’on pourrait s’attendre à obtenir si la
situation était « simple » : sans dépendance, sans sur-représentation, sans
sous-représentation, sans spécificité locale...
Le rapport entre la valeur réelle (130) et la valeur théorique (63), c’est ce
que mesure le quotient de localisation.
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Variables qualitatives

Tableau de contingence et valeurs théoriques
Valeurs théoriques
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Variables qualitatives

Test du Chi-2
Principes

L’idée du chi-2 (χ2) de Pearson est de comparer les effectifs réellement
observés (ok) avec les effectifs théoriques (ek) si les variables X et Y étaient
indépendantes.

Pour cela, cette technique s’appuie sur une mesure, appelée mesure du χ2.
La statistique du χ2 quantifie l’écart (la distance) entre tous les effectifs
observés et tous les effectifs théoriques.

χ2 =
K∑
k

(ok − ek)2
ek

Dans notre cas, la première valeur de ce calcul du χ2 est :

(130− 63, 69)2/63, 69 = 69
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Variables qualitatives

Test du Chi-2
Calcul

Cette valeur totale peut alors faire l’objet d’un test d’indépendance en s’ap-
puyant sur une table du χ2. Il faut pour cela définir un niveau de risque.
Pour déterminer le nombre de degrés de liberté, il faut effectuer le calcul
suivant où Nc est le nombre de colonnes et Nl le nombre de lignes :

DL = (Nc − 1)× (Nl − 1)

Si la valeur du χ2 est supérieure à celle du tableau alors les deux variables
sont liées. Les logiciels fournissent souvent la p-value.
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Variables qualitatives

Test du Chi-2
Table du χ2
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Variables qualitatives

Test du Chi-2
Conclusion

Dans notre exemple, le nombre de degrés de liberté est de : (8-1) × (7-1) =
42. D’après la table du χ2, pour un risque de 5 % et un nombre de degrés
de liberté de 42, la valeur de référence est comprise entre 55,75 et 67,50.

La valeur du χ2 est donc très largement supérieure à la valeur de référence.
La localisation et la production sont liées.

Attention
Facile à utiliser le test du χ2 doit en théorie remplir certaines conditions
d’application : un effectif global suffisant (>20), peu d’effectifs faibles (80
% des cases > 5).

Lorsque les effectifs sont très élevés, le test du χ2 aboutit presque systé-
matiquement au rejet de l’hypothèse d’indépendance. Un petit écart, aussi
infime soit-il, se répercute fortement sur la statistique.
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Variables qualitatives

Test du Chi-2
Alternatives

Si le test du χ2 est très répandu, il existe néanmoins des alternatives.

Le test du V de Cramer, qui s’appuie sur la métrique du χ2, permet d’obtenir
une valeur de l’intensité de la liaison.

En épidémiologie, il est classique de calculer des ODDS ratios (rapports de
cotes), une des deux variables qualitatives doit être de type binaire (ma-
lade/sain).

Lorsque les deux variables sont binaires, il est pertinent de passer par un
test de corrélation (0 pour absence non, 1 pour présence oui).

Enfin, le χ2 peut constituer une alternative à la corrélation, ce n’est pas
un appauvrissement surtout lorsqu’une variable quantitative a un compor-
tement discret (années d’études supérieures, durée de prêts...).
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Variables qualitatives

Anova
Présentation

En statistique, l’analyse de la variance (ANOVA : analysis of variance) est
un ensemble de modèles statistiques utilisés pour vérifier si les moyennes de
différents groupes sont égales.

Cette analyse est appelée « analyse de variance » car sa procédure s’appuie
sur les variances pour déterminer si les moyennes sont différentes.

Ce test s’applique lorsque l’on mesure une ou plusieurs variables explicatives
catégorielle (appelées alors facteurs de variabilité, leurs différentes modalités
étant parfois appelées « niveaux ») qui peuvent avoir de l’influence sur une
variable quantitative continue.

On parle d’analyse à un facteur lorsque l’analyse porte sur un modèle décrit
par un seul facteur de variabilité, d’analyse à deux facteurs ou d’analyse
multifactorielle sinon (MANOVA).
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Variables qualitatives

Anova
Exemple
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Variables qualitatives

Anova
Détails statistiques
Les écarts à la moyenne qui interviennent dans le calcul de la variance
peuvent s’écrire de la manière suivante :

Xij − X̄ = (X̄j − X̄ ) + (Xij − X̄j)

Avec ce petit jeu d’écriture, qui introduit la moyenne X̄j d’un facteur dans
la formule, on écrit que l’écart à la moyenne globale est égal à l’écart entre
les groupes plus l’écart à l’intérieur des groupes. On obtient alors la formule
de variance suivante :

nj∑
i

p∑
j

(Xij − X̄ )2 =
nj∑
i

p∑
j

(X̄j − X̄ )2 +
nj∑
i

p∑
j

(Xij − X̄j)2

Le premier terme calcule la variance globale (correspondant au SCT), le
second terme calcule la variance expliquée par les moyennes des groupes
(SCE), le troisième terme calcule la variance au sein des groupes la variance
résiduelle (SCR).
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Variables qualitatives

Anova
Détails statistiques

Très souvent les logiciels donnent les carrés moyens et non les sommes des
carrés moyens :

CMT = SCT / (n-1) ; CME = SCE / (p - 1) ; CMR = SCR / (n - p)

A partir de ces valeurs, un test de Fisher peut être effectué pour déterminer
la significativité de ces écarts pour un risque donné :

F = CME/CMR valeur à comparer à Fischer(p − 1, n − p)

Le rapport SCE/SCT peut être interprété comme un R2.
Ces calculs peuvent être généralisés à plusieurs facteurs. On introduira pour
cela les variations des interactions entre différents facteurs.
L’Anova peut permettre d’effectuer des tests de Fisher pour comparer des
modèles emboîtés (les variables du plus petit modèle sont contenues dans
le plus grand modèle).
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Variables qualitatives

Ancova
Présentation

Le défaut de l’Anova est qu’elle ne s’applique qu’à des variables explicatives
qualitatives. Le défaut des régressions présentées est qu’elles ne s’appliquent
qu’à des variables explicatives quantitatives.
Or, très souvent les deux types de variables se mélangent. Un exemple est
le rapport prix/superficie des logements. Quels que soient les territoires
(variables qualitatives) le prix à tendance à augmenter de manière linéaire
avec la superficie (le fameux prix au mètre carré).
Si vous prenez tous les territoires de manière indifférente dans un modèle de
régression, vous pouvez obtenir n’importe quoi (car le prix au mètre carré
n’est pas le même partout et les contraintes sur les logements non plus).
De même, si vous faites une Anova sur les relations territoire/prix ou terri-
toire/superficie, il faut le faire en tenant compte de la relation prix/superficie
au sein de chaque territoire au risque de sous-évalué les deux liens étudiés.
L’Ancova propose une solution pour résoudre ce type de problème.
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Variables qualitatives

Ancova
Présentation

L’analyse de la covariance (ANCOVA) est une méthode statistique visant
à tester, par un modèle linéaire général, l’effet sur une variable dépendante
continue d’une ou plusieurs variables indépendantes catégorielles, indépen-
damment de l’effet d’autres facteurs quantitatifs continus (de covariables).

En d’autres termes, l’Ancova est une combinaison entre une Anova et une
régression linéire, de telle sorte que l’Ancova permette de tester si certains
facteurs ont un effet sur la variable à expliquer après avoir enlevé la variance
due aux covariables.

L’Ancova permet donc en quelque sorte de comparer des moyennes ajustées
de deux ou plusieurs groupes indépendants (toute chose égale par ailleurs).
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Variables qualitatives

Ancova
Différentes configurations
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Variables qualitatives

Ancova
Différentes hypothèses
L’Ancova fait plusieurs hypothèses au sujet des données :

linéarité entre la covariable et la variable-réponse à chaque niveau de
la variable de groupement. Diagramme de dispersion groupé de la
covariable et de la variable-réponse.
homogénéité des pentes de régression. Les pentes des droites de
régression devraient être les mêmes pour chaque groupe. Cette
hypothèse évalue qu’il n’y a pas d’interaction entre le résultat et la
covariable.
la variable-réponse doit être approximativement distribuée
normalement. Test de normalité Shapiro-Wilk sur les résidus du
modèle.
homoscedasticité ou homogénéité de la variance des résidus pour tous
les groupes.
aucune valeur aberrante dans les groupes.
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Variables qualitatives

Ancova
Exemple

Prenons le cas de l’évaluation de trois publicités sur l’intention d’achat d’un
produit.

D’après ce graphique, il semble que la publicité 2 soit en moyenne la plus
efficace en termes d’intention d’achat. Une Anova nous permettrait de dé-
terminer si cette différence est significative pour conclure cela.

Serge Lhomme Statistique multivariée et Introduction à R 58 / 98



Variables qualitatives

Ancova
Exemple

Néanmoins, cela serait trop simple, car les personnes avaient déjà une cer-
taine intention d’achat avant la publicité (une certaine sympathie).

La question est alors la suivante, quelle est la publicité réellement la plus
efficace ?
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Variables qualitatives

Ancova
Réalisation

L’Ancova consiste à trouver une relation de type linéaire avec des variables
explicatives qualitatives et quantitatives.

Il faudra réaliser une Anova (un test F) sur le modèle Ancova de façon à
vérifier que toutes les variables sont bien explicatives.

Il faudra de surcroit s’intéresser à l’existence (et à la prise en compte) des
interactions entres les variables explicatives toujours à l’aide d’une Anova
sur les modèles avec ou sans interactions, cela permettra de savoir si les
coefficients directeurs des régressions peuvent être considérés comme iden-
tiques.

On pourra alors calculer les moyennes ajustées qui seront égales à :

Ȳj = constante ± coefquali + X̄ ∗ coefquanti
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Variables qualitatives

Régression logistique
Présentation

L’Ancova permet de comprendre qu’il est pertinent de travailler avec des
modèles de régression lorsque l’on dispose de variables explicatives qualita-
tives.

Néanmoins, l’Ancova ne permet pas de résoudre le cas où c’est la variable
à expliquer qui est qualitative. Dans ce cadre, on utilisera les modèles de
régression logistique (modèle logit) ou de régression multinomiale.

La régression logistique s’applique au cas où la variable à expliquer est de
type binaire.

P(x) = exp(β0 + β1X )
1 + exp(β0 + β1X )

Les régressions multinomiales sont une généralisation des régressions logis-
tiques. Ces régressions sont des exemples de modèles linéaires généralisés.
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Variables qualitatives

Régression logistique
Exemple

Dans cet exemple, la valeur β1 est égale à 0,19 et est significativement
supérieure à zéro. L’âge apparait être un facteur de risque.
L’ODDS ratio, le coefficient directeur, la taille de l’effet se calcule en prenant
l’exponentiel de cette valeur : 1,209.
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Méthodes exploratoires, synthétiques et classification

ACP
Présentation

L’Analyse en Composantes Principales (ACP) est une méthode de la famille
de la statistique multivariée qui consiste à transformer des variables liées
entre elles (corrélées) en nouvelles variables décorrélées les unes des autres
(indépendantes).
Ces nouvelles variables sont nommées « composantes principales », ou axes
principaux. Ces composantes cherchent alors à restituer aux mieux les varia-
tions du jeu de données. On va alors utiliser ces méthodes pour représenter
l’information avec moins de composantes principales que de variables.
Cette méthode permet en quelque sorte de réduire le nombre de variables en
rendant l’information moins redondante. On va pour cela accepter de perdre
un peu d’information, car cela va permettre de simplifier l’interprétation.
Généralement, on choisira une représentation comportant deux composantes
principales.
Cette méthode s’applique uniquement à des variables quantitatives.
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Méthodes exploratoires, synthétiques et classification

ACP
Présentation

L’ACP se rattache à la famille des analyses factorielles qui regroupe diffé-
rentes méthodes d’analyses de grands tableaux rectangulaires de données,
visant toutes à identifier et à hiérarchiser des facteurs corrélés aux données.

L’ACP s’applique très bien à des tableaux d’information géographique, puis-
qu’elle s’appuie sur des tableaux avec en lignes des individus et en colonnes
des variables.

Dans un tableau d’information géographique, les individus sont des entités
géographiques. C’est pourquoi cette méthode est très utilisée en géographie.

L’objectif est alors de simplifier l’information pour permettre par exemple
d’identifier plus facilement des ressemblances entre les entités géographiques.

Néanmoins, l’objectif sans doute premier de l’ACP, c’est d’analyser les liai-
sons entre les variables et d’identifier les redondances (les corrélations).
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Méthodes exploratoires, synthétiques et classification

ACP
Exemple

A partir de ces données, on peut se demander quelles villes ont des profils
de températures similaires ou au contraire opposées.

Serge Lhomme Statistique multivariée et Introduction à R 66 / 98



Méthodes exploratoires, synthétiques et classification

ACP
Exemple

En choisissant de représenter les individus sur un graphique fondé sur les
axes des deux premières composantes principales de l’ACP, on peut en partie
répondre à cette question.
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Méthodes exploratoires, synthétiques et classification

ACP
Exemple

On peut faire la même chose pour les variables, c’est le cercle des corréla-
tions. L’ACP peut alors permettre de ne pas étudier deux à deux toutes les
corrélations pour identifier des variables redondantes.
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Présentation

L’AFC (Analyse Factorielle des Correspondances) se différencie de l’ACP en
ce sens qu’elle s’applique uniquement à des tableaux de contingence appelés
tableaux de correspondance.

Ainsi, l’AFC peut être présentée comme une solution pour appliquer une
analyse factorielle à des variables qualitatives.

Dans ce cadre, le concept de similarité entre les lignes et les colonnes est dif-
férent, car la similarité entre deux lignes ou deux colonnes est complètement
symétrique. Deux lignes sont proches l’une de l’autre si elles s’associent aux
colonnes de la même façon.

Une fois encore on pourra utiliser cette analyse sur des données géogra-
phiques.
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Présentation

Les liens entre AFC et méthodes du χ2 sont forts, mais l’AFC ne traite pas
la question de la significativité de la liaison et s’intéresse uniquement à la
nature de cette liaison.

L’ACM (Analyse des Correspondances Multiples) permettra d’étudier plu-
sieurs variables qualitatives.

Dans l’ACM, on retrouve en lignes des individus et en colonnes les variables
qualitatives. Ces problématiques sont alors presque les mêmes que celles de
l’ACP.

Attention, l’ACM passera par la production d’un tableau disjonctif complet,
qui s’applique au sens strict du terme à des individus. Ainsi son application
à des tableaux d’information géographique est complexe.

L’AFM (Analyse Factorielle Multiple) est une généralisation des méthodes
factorielles et pourra s’appliquer à des variables qualitatives et quantitatives.
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Exemple AFC
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Exemple AFC
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Exemple AFC
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM
Exemple AFC
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Méthodes exploratoires, synthétiques et classification

CAH
Présentation

La Classification Ascendante Hiérarchique (CAH) est une méthode de clas-
sification itérative dont le principe est simple, l’objectif étant de regrouper
des objets au sein de classes (les objets qui se ressemblent dans une même
classe, les objets dissemblables dans des classes différentes) :

On commence par calculer la dissimilarité entre les objets (individus).
Puis on regroupe les deux objets les plus similaires, créant ainsi une
classe comprenant ces deux objets.
On calcule ensuite la dissimilarité entre cette classe et les autres objets
en utilisant un critère d’agrégation. Puis on regroupe les deux objets
ou classes d’objets les plus similaires.
On continue ainsi jusqu’à ce que tous les objets soient regroupés.

Attention, cette méthode est sensible à la redondance des variables étudiées.
Par conséquent, il peut être très pertinent de l’utiliser sur les coordonnées
d’une analyse factorielle.
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Méthodes exploratoires, synthétiques et classification

CAH
Calcul de dissimilarité

Distance(euclidienne) =
√

(X1 − X2)2 + (Y1 − Y2)2

Dist(Paris−Marseille) =
√

(600− 846)2 + (2428− 1815)2 = 660
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Méthodes exploratoires, synthétiques et classification

CAH
Calcul de dissimilarité

Distance euclidienne :
√

(X1 − X2)2 + (Y1 − Y2)2

De(P−M) =
√

(600− 846)2 + (2428− 1815)2 = 660

Distance de Manhattan : | X1 − X2 | + | Y1 − Y2 |

Dm(P−M) =| 600− 846 | + | 2428− 1815 |= 246 + 613 = 859

Distance de Tchebychev : Max [(X1 − X2); (Y1 − Y2)]

Dt(P−M) = Max [(600− 846); (2428− 1815)] = Max [246; 613] = 613
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Méthodes exploratoires, synthétiques et classification

CAH
Calcul de dissimilarité

Dist(Paris−Marseille) =
√

(5− 2)2 + (2− 5)2 + (6− 2)2 + (4− 4)2
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Méthodes exploratoires, synthétiques et classification

CAH
Principe
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Méthodes exploratoires, synthétiques et classification

CAH
Principe
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Méthodes exploratoires, synthétiques et classification

CAH
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Méthodes exploratoires, synthétiques et classification
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Méthodes exploratoires, synthétiques et classification

CAH
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Méthodes exploratoires, synthétiques et classification

CAH
Principe

Serge Lhomme Statistique multivariée et Introduction à R 84 / 98



Méthodes exploratoires, synthétiques et classification

CAH
Principe
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Méthodes exploratoires, synthétiques et classification

CAH
Paramètres d’application

Parmi les paramètres d’une CAH, en plus de la mesure de dissimilarité, il y
a donc le critère d’agrégation :

Le saut minimum retient le minimum des distances entre individus de
C1 et C2. C’est ce critère qu’on a appliqué précédemment.
Le saut maximum est la dissimilarité entre les individus de C1 et C2
les plus éloignés.
Le lien moyen consiste à calculer la moyenne des distances entre les
individus de C1 et C2.
La distance de Ward vise à maximiser l’inertie inter-classe.

Il faut aussi choisir le nombre de classes en tenant notamment compte de la
qualité de la partition qui se mesure à l’aide d’une valeur d’inertie (variance).

Un gros travail consiste à interpréter les caractéristiques des classes créées.
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Méthodes exploratoires, synthétiques et classification

CAH
Dendogramme
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Méthodes exploratoires, synthétiques et classification

Variance et Inertie
La qualité des axes principaux ou des classifications
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Introduction à R

Affectation et calcul
R fonctionne un peu comme une calculatrice. Si vous tapez 2 + 3, le logiciel
vous retournera la valeur 5. Néanmoins, on utilisera R davantage comme un
langage de programmation en suivant les principes de l’affectation informa-
tique.

Exemple d’affectation avec R
a <- 2
b <- 3
c <- a + b

L’affichage des résultats se fera alors en utilisant une fonction : « print() ».

Affichage d’une variable avec R
print(c)
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Introduction à R

Affectation et calcul
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Introduction à R

Les types de données

Il existe de nombreux types de variables dans R.

Les variables de type texte
a <- "Texte"

Ces variables peuvent être ordonnées dans une liste (un vecteur) ou dans
plusieurs listes pour former une matrice (un tableau de valeurs).

Les vecteurs et les matrices
b <- c(18, 182, 1.5, 15, 200, 5)
c <- matrix(c (18, 182, 1.5, 15, 200, 5), nrow = 2)
d <- matrix(c (18, 182, 1.5, 15, 200, 5), ncol = 2)
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Introduction à R

Les types de données
Pour accéder à une valeur ou à un ensemble de valeurs, il faut utiliser les
index des vecteurs ou des matrices.

Accès aux valeurs des vecteurs et des matrices
e <- b[2] + b[3]
f <- c[1,2] + c[2,3]
col <- c[,1]
ligne <- c[1,]

Accès avancé aux valeurs des vecteurs et des matrices
e <- b[c(2,4)]
f <- c[(c<15)]
g <- b[2 :5]
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Introduction à R

Les types de données
Les data frames permettent de manipuler des tableaux bien structurés. Ce
type de données est particulièrement bien adapté aux importations de fichiers
textes.

Les Data Frames
articles <- c( "un", "le", "la", "les")
sujets <- c( "mot", "terme", "chose", "images")
dfmots <- data.frame(articles, sujets)
dfmots2 <- data.frame(col1 = articles, col2 = sujets)

Appel des valeurs des Data Frames
print(dfmots$sujets)
print(dfmots[,1])
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Introduction à R

L’import de données et premières fonctions
Importation de fichiers textes
MyTexte <- read.table(file="c :/TheData.csv", header=TRUE, sep=",")
MyData <- read.csv(file="c :/TheData.csv", header=TRUE, sep=",")
adresse <- file.choose()
MyData <- read.csv(file=adresse, header=TRUE, sep=",")

Fonctions de base
res <- summary(b)
plot(d[,1],d[,2])
hist(b)
reg <- lm(d[,1] ~d[,2])
res3 <- summary(reg)
t.test(d[,1], d[,2])
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Introduction à R

Les bibliothèques
Ce qui constitue la puissance de R, ce sont ses nombreuses bibliothèques
qu’il faut télécharger.

Les librairies cartographiques
library(rgdal)
nuts3 <- readOGR(dsn = adresse, layer = "nuts3", verbose = TRUE)
library(sp)
class(nuts3)
nuts3@proj4string
head(nuts3@data)
plot(nuts3[1, ], col = "#5C99AD", border = " #2A5F70", lwd = 4)
library(rgeos)
europeBuffer <- gBuffer(spgeom = europe, width = 50000)
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Introduction à R

Les boucles
Enfin, comme tout langage de programmation, R permet de répéter les
mêmes instructions plusieurs fois en changeant seulement quelques para-
mètres. Ce sont les boucles. Ces boucles peuvent alors permettre d’effectuer
des tests. Ce sont par exemple les Si.

Les boucles
for (i in 1 :10) {

print(i)
}

for (i in 1 :10) {
if (i > 5 & i < 8) {

print(i)
}

}
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