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Introduction

Introduction

Les statistiques multivariées
Définition
En statistiques, les analyses multivariées ont pour caractéristique de

s'intéresser a la distribution conjointe de plusieurs variables. Les analyses
bivariées sont des cas particuliers a deux variables.

Les analyses multivariées sont trés diverses selon |'objectif recherché ou la
nature des variables. On peut identifier deux grandes familles :
o celle des méthodes descriptives visant a structurer et résumer
["information ;
o celle des méthodes explicatives visant a expliquer une ou des variables
dites "dépendantes" (variables a expliquer) par un ensemble de
variables dites "indépendantes" (variables explicatives).
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Corrélation et régression de variables quantitatives

o Corrélation et régression de variables quantitatives
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Corrélation et régression de variables quantitatives

Corrélation et régression
Définitions
Corrélation

Etudier la corrélation entre deux ou plusieurs variables, c'est mesurer
I'intensité de la liaison qui peut exister entre ces variables.

Régression

La régression est un ensemble de méthodes statistiques tres utilisées
pour analyser la relation d'une variable par rapport a une ou plusieurs
autres. On cherche alors a retrouver (prédire) la variable a expliquer a
I'aide des autres variables.

Dans le cadre de corrélations et de régressions linéaires, on s'intéresse plus
particulierement a des relations de type linéaire.
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire

Des graphiques plutét que des définitions ou des calculs pour comprendre

Pour faire simple, lorsque |'on étudie deux variables quantitatives, on peut
produire un « nuage de points », une régression linéaire vise alors a résumer

ce nuage de points par une forme plus simple a interpréter indiquant la
« tendance générale » : une droite.
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Corrélation et régression linéaire
Des graphiques plutét que des définitions ou des calculs pour comprendre

C'est le coefficient de corrélation (R) ou le coefficient de détermination (R?)
qui nous permet de dire si cette régression est « juste », a quel point la droite
résume bien les variations du nuage de points :
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire

Des graphiques plutét que des définitions ou des calculs pour comprendre

C'est le coefficient de corrélation ou le coefficient de détermination qm nous
permet de dire si cette régression est « juste », ou « pas du tout » :
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Equation

L'équation de la droite recherchée est de type linéaire :
Y=aX+b

Les coefficients de la droite de régression s'obtiennent alors avec les
équations suivantes :

Cov(x,y) = - .
Var(x) 1 € Yo

> (X — X)?

i=1

Le coefficient de corrélation R (de Bravais-Pearson) :

R = Cor(X,Y) = 4XY) (1 <R < 1)

OxXOoy
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire
Les résidus

Définition

Un résidu est dans une régression le terme qui n'est pas expliqué par la
ou les variables explicatives.

Il se calcule simplement en calculant I'écart entre la valeur réelle de y et la
valeur théorique (estimée, prédite) de y (obtenue a partir de I'équation
déterminée par la régression linéaire) :

A

Yi=aXi+b
e =Yi— Vi

Yi=VYite =aXi+b+e
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire

Les résidus
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Corrélation et régression linéaire
Les résidus
Valeurs
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Corrélation et régression de variables quantitatives

Corrélation et régression linéaire

MCO : Méthode des moindres carrées ordinaires

Selon la méthode des moindres carrées (de Legendre et Gauss), la droite qui
décrit « le mieux » les données est celle qui minimise la somme quadratique
des résidus (des déviations des mesures aux prédictions).

Yi—y=Yi—y+e
SNi—y)P=>Ti-y)P+> e
SCT = SCE + SCR

p2_ SCE _ | SCR
T SCT T sCT

Ainsi, R? peut étre interprété comme la part (le pourcentage) de variance
expliquée par les valeurs obtenues par la droite de régression (0 < R? < 1).
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Corrélation et régression de variables quantitatives

La significativité

Test T de Student

Dans les faits, il est important de savoir si les coefficients calculés sont
significativement différents de ce que I'on pourrait obtenir par hasard entre

deux variables aléatoires de méme taille.

Pour le coefficient de corrélation, il faut comparer la valeur t obtenue avec

celle du tableau de Student pour n - 2 degrés de liberté :
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Corrélation et régression de variables quantitatives

La significativité

La p-value
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Corrélation et régression de variables quantitatives

La significativité

La p-value

Plutot que de comparer la statistique calculée avec le seuil théorique fourni
par la loi de Student, les logiciels proposent souvent la probabilité critique
(p-value) que I'on doit comparer au risque « que I'on s'est fixé. Si la p-value
est plus petite, alors nous rejetons I'hypothéese nulle.

La probabilité critique correspond au niveau de risque a partir duquel on ne
peut plus rejeter I'hypothese nulle.

Treés souvent la p-value est simplement interprétée comme la probabilité de
se tromper en rejetant I'hypothése nulle.

De méme des tests de significativité (Student) peuvent étre effectués sur les
coefficients de la régression (les estimateurs) dont la robustesse (la qualité)
dépend notamment de la variation des variables explicatives. Les erreurs
types correspondantes permettent de déterminer des intervalles de confiance.
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Corrélation et régression de variables quantitatives

Régression non linéaire

Différentes formes de nuages de points

Liaison lineaire positive Liaison lineaire négative
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Régression non linéaire
Différentes formes de nuages de points
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Corrélation et régression de variables quantitatives

Régression non linéaire

Kernel trick : Astuce du noyau

En apprentissage automatique, I'astuce du noyau (kernel tricks), est une mé-
thode qui permet d'utiliser un classifieur linéaire pour résoudre un probleme
non linéaire.
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Corrélation et régression de variables quantitatives

Régression non linéaire

Kernel trick : Astuce du noyau

Pour des régressions, cela revient a utiliser des fonctions mathématiques
non-linéaires pour revenir a une situation linéaire.

—4.0,

e

Y =-1.4397605357 X + -2.95381813949

N R =-0.774841910914

-5.0}

Log(Flux / (Pi x Pj))

-7.0}

-75
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Log(Distance)

Serge Lhomme Statistique multivariée et Introduction a R



Corrélation et régression de variables quantitatives

Régression non linéaire

Détails de la transformation bi-logarithmique
P=Kxn*

= log(P) = log(K x n™%)

= log(P) = log(K) + log(n™)

= log(P) = log(K) — alog(n)

= log(P) = —alog(n) + log(K)
=Y =—-aX+b

Conclusion de la transformation bi-logarithmique

b = log(K) = K = 10°

a—=—uw

Serge Lhomme Statistique multivariée et Introduction a R 22/98



Corrélation et régression de variables quantitatives

Régression non linéaire

Une astuce pas si simple a appliquer

Attention bidouille

Attention, le kernel trick est une "bidouille" et n'est pas totalement sans
impact sur les calculs.

Cette bidouille est trés utilisée et il ne faut pas la dramatiser. Certes les es-
timateurs pourront alors étre biaisés, mais cette méthode reste tres efficace.

Difficile
Il est souvent trés difficile de trouver les transformations mathématiques a
appliquer.
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Corrélation et régression de variables quantitatives

Régression linéaire multiple

Une simple généralisation d'une régression linéaire bivariée

Lorsque I'on cherche a expliquer un phénomeéne d'un point de vue statistique,
il est rare qu'une seule variable explicative soit suffisante. Un « modéle »né-
cessite ainsi souvent |'intégration de plusieurs variables.

Heureusement les méthodes de régression linéaire se généralisent tres bien
a plusieurs variables. On parle de régression linéaire multiple. On tente alors
d’'expliquer une variable Y par plusieurs variables explicatives Xi.

Si vous utilisez deux variables explicatives, votre nuage de points pourra étre
représenté en trois dimensions et les méthodes de régression vous propose-
ront alors I'équation d'un plan pour représenter ce nuage...

Le calcul du R? est strictement identique et donne en quelque sorte la
précision du modele, la part de variance expliquée de la variable Y par la
combinaison linéaire des variables explicatives Xi.

Y =alX1+a2X2+a3X3+ ...+ b
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Corrélation et régression de variables quantitatives

Régression linéaire multiple

Une simple généralisation, mais quelques difficultés

La notion de corrélation reste « bivariée » et ne se généralise pas, mais
les coefficients des variables explicatives peuvent faire I'objet de tests de
significativité.

Il faut alors faire attention a la colinéarité entre les variables, c'est a dire
aux éventuelles corrélations entre les variables explicatives. Ainsi, en théorie,
une régression linéaire multiple doit s'accompagner d'études de corrélation
par paire (matrice des corrélations).

Ajouter des variables, méme non significatives, contribue a améliorer le mo-
déle explicatif en termes de R?. C'est pourquoi un modeéle doit viser 3 rester
parcimonieux, en gardant uniquement des variables significatives.

Il existe aussi des alternatives au calcul du R, comme le critére d'information
d’'Akaike ou le critére d'information bayésien.
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Les pieges a éviter
Corrélation n'est pas causalité

Nombre de fautes d'orthographe en fonction de la pointure. Les éléves
ayant les plus grands pieds font moins de fautes...
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Paradoxe de Simpson et facteur confondant
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Corrélation et régression de variables quantitatives

Les pieges a éviter

L'erreur écologique

En géographie, I'étude des corrélations se fait a travers I'analyse d'un en-
semble de lieux, de territoires au sein desquels on a des agrégats.

Ainsi lorsque les variables décrivant ces lieux sont des attributs sociaux décri-
vant des habitants, il faut toujours faire attention au fait qu'une corrélation
établie au niveau des lieux n'implique pas forcément une corrélation au ni-
veau des individus.

Une étude menée au niveau des individus (sociologique) peut montrer que le
taux de criminalité est plus élevé chez les autochtones que chez les étrangers.
Pourtant, cette étude au niveau des quartiers (géographique) peut trés bien
montrer une corrélation entre la proportion d'étrangers des quartiers et leur
taux de criminalité.

Il faut faire attention a ne pas « individualiser » une corrélation issue d'un
« agrégat ».
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Les points atypiques aberrants

X Y
1 030 070 1000 M
2 0.35 055 s
3 0.54 0.37 o
4 0.28 0.54
5 0.21 0.83 s
B 0.03 0.31 6.00
7 934 967 son
[r (6 points) [ 0.0185 | .
[r @ points) | 0.9976 | 2
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Les pieges a éviter
Les regles statistiques a respecter

Régression et corrélation s'appliquent en théorie uniquement a des variables
quantitatives continues.

Le test de Student classiquement associé au calcul de régression dans les
logiciels statistiques s'applique a des distributions normales.

Le test de Shapiro-Wilk permet de tester la normalité d'une distribution.

Les tests de corrélation de Kendall et de Spearman sont recommandés
lorsque les variables ne suivent pas une loi normale.

Les statistiques 7 (tau) de kendall et p (rho) de Spearman sont respecti-
vement utilisées pour estimer des coefficients de corrélation fondés sur les
rangs.

Ce sont des tests statistiques dits robustes, car ils ne dépendent pas de la
distribution des données. lls sont non paramétriques.
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Etudier différents graphiques des résidus pour éviter des erreurs

Hypothéses nombreuses a vérifier sur les erreurs :

erreurs; Indépendance des erreurs (attention a
ou spatiale) ; Exogénéité (variables explicatives non corrélées au terme d'er-

reur) ;

Residuals
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Etudier différents graphiques des résidus pour éviter des erreurs

Case 1 Case 2
Normal Q-Q Normal Q-Q
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1 l
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Etudier différents graphiques des résidus pour éviter des erreurs

Case 1 Case 2
Scale-Location Scale-Location
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Corrélation et régression de variables quantitatives

Les pieges a éviter

Etudier différents graphiques des résidus pour éviter des erreurs

Standardized residuals

302 1

4

Case 1
Residuals vs Leverage

-~ Cook'sdistance

T T T
0.02 0.04 0.06

Leverage

05

Standardized residuals

Case 2
Residuals vs Leverage

----010 Cook's distance

T T T T T T
0.00 0.10 0.20

Leverage

[} = =

0.30

DA

Serge Lhomme Statistique multivariée et Introduction a R



Corrélation et régression de variables quantitatives

Les pieges a éviter

Les regles statistiques a respecter : Le quartet d'Anscombe
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Variables qualitatives

e Variables qualitatives
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Association et indépendance plutdt que corrélation

Lorsque I'on étudie des variables qualitatives, on comprend bien qu'il sera
difficile, voire impossible, de produire un nuage de points et par conséquent
de calculer des corrélations et des régressions linéaires.

Néanmoins, on peut aussi se dire qu'il faut quand méme différencier les
variables qualitatives nominales, de celles qui sont ordinales.

On parlera davantage d'association, d'influence, de dépendance ou au contraire
d’'indépendance dans le cas de variables qualitatives.

Entre deux variables qualitatives, il est par exemple possible de compter les
effectifs qui correspondent aux associations (conjonctions) possibles entre
les deux variables.

On parle de tableau de contingence. La notion de tableau croisé dynamique,
proposée par les tableurs, est une généralisation du tableau de contingence.
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Présentation

Les cases du tableau correspondent aux effectifs associés conjointement a
une modalité de X et une modalité de Y.

Toutes les modalités de X et de Y y sont représentées.

Il est possible de calculer les valeurs totales du tableau, en ligne et en
colonne, qui correspondent aux effectifs marginaux. La somme totale des
effectifs correspond a |'effectif global.

A partir des effectifs et des effectifs marginaux, il est possible de calculer
des proportions pour chaque ligne (profil en ligne) ou pour chaque colonne
(profil en colonne).

La lecture du tableau de contingence sur la base des profils est trés ins-
tructive, mais en tant que statisticien, il convient de caractériser la force
du lien a I'aide d'indicateurs numériques et éventuellement tester si elle est
significative.
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Présentation

Y x X| a1 Te xc | Total
Y1 ni Nic| -+ |Nic| N1.
Y |- | e |+ | uc ny.
yr |(nri| - [nLe| - |nLe| nr.

Total [n1 |- |n. ncln=n
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Exemple

| Effectifs observés (Nij)

1963 | Aum | TEXT || Bois || EDIT | cHIM |cons|| META [EQuIP |Total
|BULGARIE | 130 | 128 | 39 | 14 | 20 || 47 | 21 | 151 | 559
|HONGRIE | 144 | 241 | 83 | 28 | 77 | &1 | 91 || 423 |18
|PoLOGNE | 380 || 612 | 164 | 84 | 222 || 199 || 147 | 881 | 2689
[RDA [ 206 | 451 | 119 | 118 | 308 || 142 || 109 | 1056 || 2509
|RoumMANIE | 136 | 305 | 244 | 41 | 76 | 114 [ 106 | 366 [1388
|TcHECO. | 185 | 412 | 130 | 63 | 139 || 151 || 177 | 883 ||2140
|yougosL. | 126 | 223 | 132 | s8 | 76 || 78 | 69 | 307 || 1069
|Total | 1307 | 2372 | 881 | 406 | 927 | 792 | 720 || 4067 [11472
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Deux profils possibles : le profil en ligne

[Profils en ligne (Nij/Ni.) |

[1963 |ALM ||[TEXT [BoIS |EDIT ||cHIM |cons [META ||EQUIP |Total
[BULGARIE || 23% | 23%| 7%| 3%| 5% | 8% 4% 27%| 100%
[HONGRIE | 13%| 22%| 5% | 3%| 7%| 5%| 8% 38%100%
[POLOGNE || 14% | 23%| 6% | 3% | 8% | 7%| 5% 33%100%
[RDA | 8% 18%| 5% | 5%| 12%| 6%| 4% 42%100%
[ROUMANIE| 10% | 22% | 18% | 3%| 5% | 8% 8%| 26%100%
[foHECO. | 9% 19%| 6% | 3%| 6% | 7%| 8% 41%100%
[vougosL || 12%| 21%| 12%| 5%| 7%| 7%| 6% 29%100%
[Total | 1% 21%| 8% 4%| 8% | 7% 6%| 35% 100%
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Deux profils possibles : le profil en colonne

Profils en colonne (Nij/N.j) || I I I I I I |
1963 Aum |[TexT |[Bois |[EDIT |[cHiv |[cons|[META |[EQUIP |[Total
BULGARIE || 10%]  5%|[  4%][ 3%  3%| %[ 3% 4% 5%
HONGRIE |[ 11%][ 10%|[  e%][ 7% 8%| 8%| 13%| 10%] 10%
POLOGNE || 29%]| 26%]|[ 19%][ 21%|[ 24%]|[ 25%| 20%| 22%| 23%
RD.A. 16%||  19%] 14%| 29%]| 33%|| 18%|[ 15%| 26%]|| 22%
[roumamie]| 10%|  13%][ 28%| 0% 8% 14%|[ 15%| 9% 12%]
TCHECO. || 14%|[ 17%|[ 15%]|[ 16%|[ 15%| 19%] 25%| 22%]|[ 19%
voUGOSL. || 10%| 9% 15%]|| 14%| 8% 10%| 10%| 8%] 9%
[Total | 100%]|| 100%| 100%]|| 100%]|[ 100%[ 100%] 100%| 100%][100%]
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Variables qualitatives

Tableau de contingence et valeurs théoriques

Valeurs théoriques

Avec un tableau de contingence, on peut donc obtenir la valeur totale des
effectifs concernés. E = 11472.

On peut aussi obtenir la taille d'une modalité vis-a-vis des autres pour les
colonnes. ALIM = 1307 / 11472 = 0.11

On peut aussi obtenir la taille d'une modalité vis-a-vis des autres pour les
lignes. BULGARIE = 559 / 11472 = 0.05

Si I'on multiplie I'ensemble de ces valeurs, on obtient une valeur théorique,
qui correspond a ce que l'on pourrait obtenir si les deux variables étaient
indépendantes. 11472 x 0.11 x 0.05 = 63

Cette valeur correspond a ce que I'on pourrait s'attendre a obtenir si la
situation était « simple » : sans dépendance, sans sur-représentation, sans
sous-représentation, sans spécificité locale...

Le rapport entre la valeur réelle (130) et la valeur théorique (63), c'est ce
que mesure le quotient de localisation.
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Tableau de contingence et valeurs théoriques

Valeurs théoriques

Variables qu

Valeur Théorigue AUM TEXT BOIS EDIT CHIM CONS META EQUIP
BULGARIE 63,69 115,58 42,93 19,78 45,17 38,59 35,08 198,17
HONGRIE 127,37 231,16 85,86 39,57 90,34 77,18 70,17 396,35
POLOGNE 306,36 555,99 206,50 95,17 217,29 185,64 168,77 953,29

R.D.A. 285,85 518,77 192,68 88,79 202,74 173,22 157,47 889,48
ROUMANIE 158,13 286,99 106,59 49,12 112,16 95,82 87,11 492,07
TCHECO. 243,81 442,48 164,34 75,74 172,92 147,74 134,31 758,66
YOUGOSL 121,79 221,03 82,09 37,83 86,38 73,80 67,09 378,98
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Test du Chi-2

Principes

L'idée du chi-2 (x?) de Pearson est de comparer les effectifs réellement

observés (ox) avec les effectifs théoriques (ex) si les variables X et Y étaient
indépendantes.

Pour cela, cette technique s'appuie sur une mesure, appelée mesure du x2.

La statistique du x? quantifie I'écart (la distance) entre tous les effectifs
observés et tous les effectifs théoriques.

K 2
s (ok — &)
=2
p k
Dans notre cas, la premiere valeur de ce calcul du X2 est :

(130 — 63,69)/63,69 = 69
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Test du Chi-2

Calcul

Chi-2 ALIM TEXT BOIS EDIT CHIM CONS META EQUIP
BULGARIE 69,05 1,33 0,36 1,69 5,79 1,83 5,65 11,23
HONGRIE 2,17 0,42 12,57 3,38 1,97 3,39 65,19 1,79

POLOGNE 17,70 5,64 8,75 1,31 0,10 0,96 2,81 5,48
R.D.A. 22,31 8,85 28,18 9,61 54,65 5,63 14,92 31,17
ROUMANIE 3,10 1,13 177,13 1,34 11,66 3,45 4,09 32,30
TCHECO. 14,19 2,10 7,18 2,14 6,66 0,07 13,57 20,38
YOUGOSL. 0,15 0,02 30,34 10,75 1,25 0,24 0,05 13,67
Total 703,82

Cette valeur totale peut alors faire I'objet d'un test d’'indépendance en s'ap-
puyant sur une table du x?. Il faut pour cela définir un niveau de risque.
Pour déterminer le nombre de degrés de liberté, il faut effectuer le calcul
suivant ou Nc est le nombre de colonnes et NI le nombre de lignes :

DL = (Nc — 1) x (NI — 1)

Si la valeur du x? est supérieure a celle du tableau alors les deux variables
sont liées. Les logiciels fournissent souvent la p-value.
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Test du Chi-2

Table du x?

A00 050 025 010 005

271 Ag4e 502 663 TR
461 509 738 921 1060
625 7.82 935 1135 1184
7.78 949 1L14 1328 1436
924 1007 1283 1509 1675
064 1259 1445 1681 1835
1202 1407 1601 1848 2028
1336 1551 1754 2009 2196
1468 1692 1902 2166 2350

1728 1968 2192 M7 2693
IRSS 2103 2334 2621 R0
1981 2236 2474 1069 2982
2106 2369 2602 204 3131
03 500 2749 3038 3280
1384 2630 2885 3200 M2
M7 2759 3009 3341 SN
1599 2887 3183 481 IS
27120 30014 3285 3619 3858
2841 3141l 3407 3056 4000
2061 36T 3548 3893 4140
3081 3393 3ATE 4029 4280
3201 3507 3808 4164 4408
330 3642 33T 4258 4556

3856 JBEY 4192 4564 4829
3674 4001 43320 4696 4964

000 4256 4572 4989 S2M

5180 5575 5934 6371 6680
6316 6750 7142 TeIT 7952
743 TO0R 8330 BR40 9198
X . RSS2 9053 9503 10044 10424
5104 5352 5705 6039 6438 TS O34 BRI 9657 1018E 10663 112 11635
5907 6174 6564 6903 7329 BO63 £033  GRES 10756 11304 1IR14 12403 12832
67.30 T0.0S 7422 7193 B136 9004 9933 10904 11849 12434 12056 13582 14019

[m] = = =
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Test du Chi-2

Conclusion

Dans notre exemple, le nombre de degrés de liberté est de : (8-1) x (7-1) =
42. D'apres la table du x?, pour un risque de 5 % et un nombre de degrés
de liberté de 42, la valeur de référence est comprise entre 55,75 et 67,50.

La valeur du 2 est donc trés largement supérieure a la valeur de référence.
La localisation et la production sont liées.

Attention

Facile a utiliser le test du x? doit en théorie remplir certaines conditions
d’application : un effectif global suffisant (>20), peu d'effectifs faibles (80
% des cases > 5).

Lorsque les effectifs sont trés élevés, le test du x? aboutit presque systé-
matiquement au rejet de I'hypothese d'indépendance. Un petit écart, aussi
infime soit-il, se répercute fortement sur la statistique.
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Test du Chi-2

Alternatives

Si le test du x? est trés répandu, il existe néanmoins des alternatives.

Le test du V de Cramer, qui s'appuie sur la métrique du x2, permet d’obtenir
une valeur de l'intensité de la liaison.

En épidémiologie, il est classique de calculer des ODDS ratios (rapports de

cotes), une des deux variables qualitatives doit étre de type binaire (ma-
lade/sain).

Lorsque les deux variables sont binaires, il est pertinent de passer par un
test de corrélation (0 pour absence non, 1 pour présence oui).

Enfin, le x? peut constituer une alternative a la corrélation, ce n'est pas
un appauvrissement surtout lorsqu’une variable quantitative a un compor-
tement discret (années d'études supérieures, durée de préts...).
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Variables qualitatives

Anova

Présentation

En statistique, 'analyse de la variance (ANOVA : analysis of variance) est
un ensemble de modeles statistiques utilisés pour vérifier si les moyennes de
différents groupes sont égales.

Cette analyse est appelée « analyse de variance » car sa procédure s'appuie
sur les variances pour déterminer si les moyennes sont différentes.

Ce test s'applique lorsque I'on mesure une ou plusieurs variables explicatives
catégorielle (appelées alors facteurs de variabilité, leurs différentes modalités
étant parfois appelées « niveaux ») qui peuvent avoir de I'influence sur une
variable quantitative continue.

On parle d'analyse a un facteur lorsque I'analyse porte sur un modeéle décrit
par un seul facteur de variabilité, d'analyse a deux facteurs ou d’analyse
multifactorielle sinon (MANOVA).
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Variables qualitatives

Anova

Exemple
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Variables qualitatives

Anova

Détails statistiques

Les écarts a la moyenne qui interviennent dans le calcul de la variance
peuvent s'écrire de la maniere suivante :

Xy~ X = (%~ %) + (%~ %)

Avec ce petit jeu d'écriture, qui introduit la moyenne )_<J d’'un facteur dans
la formule, on écrit que I'écart a la moyenne globale est égal a I'écart entre
les groupes plus I'écart a I'intérieur des groupes. On obtient alors la formule
de variance suivante :

220G =X = 2 2% = X0 3 2 — XY

Le premier terme calcule la variance globale (correspondant au SCT), le
second terme calcule la variance expliquée par les moyennes des groupes

(SCE), le troisieme terme calcule la variance au sein des groupes la variance
résiduelle (SCR).

Serge Lhomme Statistique multivariée et Introduction a R 52/98



Variables qualitatives

Anova

Détails statistiques

Tres souvent les logiciels donnent les carrés moyens et non les sommes des
carrés moyens :

CMT =SCT / (n-1); CME=SCE / (p-1); CMR=SCR / (n - p)

A partir de ces valeurs, un test de Fisher peut étre effectué pour déterminer
la significativité de ces écarts pour un risque donné :

F = CME/CMR valeur a comparer a Fischer(p — 1, n — p)

Le rapport SCE/SCT peut &tre interprété comme un R2.

Ces calculs peuvent étre généralisés a plusieurs facteurs. On introduira pour
cela les variations des interactions entre différents facteurs.

L'Anova peut permettre d’'effectuer des tests de Fisher pour comparer des
modeles emboités (les variables du plus petit modéle sont contenues dans
le plus grand modéle).
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Variables qualitatives

Ancova

Présentation

Le défaut de I'Anova est qu’elle ne s’applique qu'a des variables explicatives
qualitatives. Le défaut des régressions présentées est qu'elles ne s'appliquent
qu'a des variables explicatives quantitatives.

Or, trés souvent les deux types de variables se mélangent. Un exemple est
le rapport prix/superficie des logements. Quels que soient les territoires
(variables qualitatives) le prix a tendance a augmenter de maniére linéaire
avec la superficie (le fameux prix au métre carré).

Si vous prenez tous les territoires de maniére indifférente dans un modéle de
régression, vous pouvez obtenir n'importe quoi (car le prix au métre carré
n'est pas le méme partout et les contraintes sur les logements non plus).

De méme, si vous faites une Anova sur les relations territoire/prix ou terri-
toire/superficie, il faut le faire en tenant compte de la relation prix/superficie
au sein de chaque territoire au risque de sous-évalué les deux liens étudiés.
L'Ancova propose une solution pour résoudre ce type de probléeme.
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Variables qualitatives

Ancova

Présentation

L'analyse de la covariance (ANCOVA) est une méthode statistique visant
a tester, par un modele linéaire général, |'effet sur une variable dépendante
continue d'une ou plusieurs variables indépendantes catégorielles, indépen-
damment de I'effet d’autres facteurs quantitatifs continus (de covariables).

En d’autres termes, I'Ancova est une combinaison entre une Anova et une
régression linéire, de telle sorte que I'’Ancova permette de tester si certains
facteurs ont un effet sur la variable a expliquer aprés avoir enlevé la variance
due aux covariables.

L'Ancova permet donc en quelque sorte de comparer des moyennes ajustées
de deux ou plusieurs groupes indépendants (toute chose égale par ailleurs).
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Variables qualitatives

Ancova

Différentes configurations

Y: variable dépendante: X: co-facteur (Prédicteur Continu): &: variable indépendante (Prédicteur
Catégoriel: discret). On teste les effets de X, 6 et X*G (interaction) sur la variable ¥

Y | Groupel
Groupe 2
/ Cas 1 : X est significatif, & et X*6 ne le sont pas.
Y change en changeant X, alors X a un effet significatif sur Y. Par contre, les
deux points d'intersection et les deux pentes sont les mémes.
X
Y | Groupel
Groupe 2——— Cas 2 : G est significatif, X et X*G ne le sont pas.
Y ne change pas en changeant X, alors X n'a pas d'effet sur Y. Les points
——————— d'intersection des deux groupes sont différents, alors G a un effet
significatif sur Y. Par contre, les deux pentes sont égales (2éro) donc 6*X n'a
pas d'effet sur Y.
X
Y Groupe 1 Cas 3 : 6 et X sont significatifs, X*G ne |'est pas.
Groupe 2——
Y change en changeant X, alors X affecte Y. Les points d'intersection des deux
groupes sont différents, alors G affecte Y également. Par contre, les deux
pentes sont égales (les lignes sont parallzles) donc I'effet de Y sur X ne varie
pas en fonction de la valeur de G (¢'est-a-dire, dépendant du groupe). Alors
% X*G n'est pas significatif.
Y | Groupel
G::\‘:z:l--- Cas 4 : 6, X et X*G sont significatifs.
/// Y change en changeant X, alors X affecte Y. Les points d'intersection des deux
S groupes sont différents, alors G affecte Y également. En plus, les deux pentes
- sont différentes (les lignes ne sont pas paralléles) donc I'effet de ¥ sur X dépend
< de la valeur de G (c'est-a-dire, dépend du groupe). Alors X*G est significatif.
X
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Variables qualitatives

Ancova
Différentes hypothéses

L'Ancova fait plusieurs hypotheses au sujet des données :

linéarité entre la covariable et la variable-réponse a chaque niveau de
la variable de groupement. Diagramme de dispersion groupé de la
covariable et de la variable-réponse.

homogénéité des pentes de régression. Les pentes des droites de
régression devraient étre les mémes pour chaque groupe. Cette
hypothése évalue qu'il n'y a pas d'interaction entre le résultat et la
covariable.

la variable-réponse doit étre approximativement distribuée
normalement. Test de normalité Shapiro-Wilk sur les résidus du
modeéle.

homoscedasticité ou homogénéité de la variance des résidus pour tous
les groupes.

aucune valeur aberrante dans les groupes.
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Variables qualitatives

Ancova

Exemple

Prenons le cas de I'évaluation de trois publicités sur I'intention d'achat d'un

produit.

90

804

Intention

60

504

Panel variable: Traitement

Intention vs Traitement

2

704

D'apres ce graphique, il semble que la publicité 2 soit en moyenne la plus
efficace en termes d'intention d’achat. Une Anova nous permettrait de dé-

terminer si cette différence est significative pour conclure cela.

Serge Lhomme Statistique multivariée et Introduction a R

58/98



Variables qualitatives

Ancova

Exemple

Néanmoins, cela serait trop simple, car les personnes avaient déja une cer-

taine intention d'achat avant la publicité (une certaine sympathie).

Intention vs Sympathie

Traitement

Traitement 1
Traitement 2
Traitement 3

Intention

T T T
350 37,5 40,0 425 450 475 500 52,5
Sympathie

La question est alors la suivante, quelle est la publicité réellement la plus

efficace ?

Serge Lhomme Statistique multivariée et Introduction a R

59/98



Variables qualitatives

Ancova

Réalisation

L'Ancova consiste a trouver une relation de type linéaire avec des variables
explicatives qualitatives et quantitatives.

Il faudra réaliser une Anova (un test F) sur le modéle Ancova de facon a
vérifier que toutes les variables sont bien explicatives.

Il faudra de surcroit s'intéresser a I'existence (et a la prise en compte) des
interactions entres les variables explicatives toujours a I'aide d'une Anova
sur les modéles avec ou sans interactions, cela permettra de savoir si les
coefficients directeurs des régressions peuvent étre considérés comme iden-
tiques.

On pourra alors calculer les moyennes ajustées qui seront égales a :

Y; = constante & coefquali + X * coefquanti
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Variables qualitatives

Régression logistique

Présentation

L'Ancova permet de comprendre qu'il est pertinent de travailler avec des
modeles de régression lorsque |'on dispose de variables explicatives qualita-
tives.

Néanmoins, I'"Ancova ne permet pas de résoudre le cas ou c'est la variable
a expliquer qui est qualitative. Dans ce cadre, on utilisera les modéles de
régression logistique (modeéle logit) ou de régression multinomiale.

La régression logistique s'applique au cas ou la variable a expliquer est de
type binaire.

~exp(fo + f1X)
P = 17 exp(o + 5uX)

Les régressions multinomiales sont une généralisation des régressions logis-
tiques. Ces régressions sont des exemples de modeles linéaires généralisés.
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Variables qualitatives

Régression logistique

Exemple

08~

maladie

00-
2IEI 4‘0 EIEI BIEI
age
Dans cet exemple, la valeur By est égale a 0,19 et est significativement
supérieure 3 zéro. L'age apparait étre un facteur de risque.

L'ODDS ratio, le coefficient directeur, la taille de I'effet se calcule en prenant
I'exponentiel de cette valeur : 1,209.
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Méthodes exploratoires, synthétiques et classification

o Méthodes exploratoires, synthétiques et classification
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Méthodes exploratoires, synthétiques et classification

Présentation

L'Analyse en Composantes Principales (ACP) est une méthode de la famille
de la statistique multivariée qui consiste a transformer des variables liées
entre elles (corrélées) en nouvelles variables décorrélées les unes des autres
(indépendantes).

Ces nouvelles variables sont nommées « composantes principales », ou axes
principaux. Ces composantes cherchent alors a restituer aux mieux les varia-
tions du jeu de données. On va alors utiliser ces méthodes pour représenter
I'information avec moins de composantes principales que de variables.

Cette méthode permet en quelque sorte de réduire le nombre de variables en
rendant I'information moins redondante. On va pour cela accepter de perdre
un peu d'information, car cela va permettre de simplifier I'interprétation.

Généralement, on choisira une représentation comportant deux composantes
principales.

Cette méthode s'applique uniquement a des variables quantitatives.
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Méthodes exploratoires, synthétiques et classification

Présentation

L'ACP se rattache a la famille des analyses factorielles qui regroupe diffé-
rentes méthodes d’analyses de grands tableaux rectangulaires de données,
visant toutes a identifier et a hiérarchiser des facteurs corrélés aux données.

L'ACP s’applique trés bien a des tableaux d'information géographique, puis-
qu'elle s'appuie sur des tableaux avec en lignes des individus et en colonnes
des variables.

Dans un tableau d’information géographique, les individus sont des entités
géographiques. C'est pourquoi cette méthode est tres utilisée en géographie.

L'objectif est alors de simplifier I'information pour permettre par exemple
d'identifier plus facilement des ressemblances entre les entités géographiques.

Néanmoins, I'objectif sans doute premier de I'’ACP, c'est d’analyser les liai-
sons entre les variables et d'identifier les redondances (les corrélations).
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Méthodes exploratoires, sy étiques et classification

ACP

Exemple

Janv_Févr Mars Avri_Mai_ Juin__ jul _Aoit Sept Octo Nove Deéce] Latilong
Bordeaux 56 66 103 128 158 193 209 21 186 138 91 62 | 445 -0
Brest 6.1 58 78 92 116 144 156 16 147 12 9 7 |4824 429
Clermont 26 37 75 103 138 173 194 191 162 112 66 36 |4547 305
Grenoble 15 32 77 106 145 178 201 195 167 114 65 23 | 451 543
Lille 24 29 6 89 124 153 171 171 147 104 61 35 | 5038 3.04
Lyon 21 33 77 109 149 185 207 201 169 114 67 31 |4545 451
Marseille 55 66 10 13 168 208 233 228 199 15 102 69 |43.18 524
Montpellier 56 67 99 128 162 201 227 223 193 146 10 65 |4336 353
Nantes 5 53 84 108 139 172 188 186 164 122 82 55 |4713 -1.33
Nice 75 85 108 133 167 201 227 225 203 16 115 82 |4342 715
Pans 34 41 76 107 143 175 191 187 16 114 71 43 |4852 22
Rennes 48 53 79 101 131 162 179 178 157 116 78 54 |4805 -1.41
Strasbourg 04 15 56 98 14 172 19 183 151 95 49 13 | 4835 745
Toulouse 47 56 92 116 149 187 209 209 183 133 86 55 |4336 126
Vichy 24 34 71 99 136 171 193 188 16 11 6.6 34 |46.08 3.26

A partir de ces données, on peut se demander quelles villes ont des profils

de températures similaires ou au contraire opposées.
[} = =

DA
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Méthodes exploratoires, synthétiques et classification

Exemple

En choisissant de représenter les individus sur un graphique fondé sur les
axes des deux premiéres composantes principales de I'ACP, on peut en partie
répondre a cette question.
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Méthodes exploratoires, synthétiques et classification

Exemple

On peut faire la méme chose pour les variables, c’est le cercle des corréla-
tions. L'ACP peut alors permettre de ne pas étudier deux a deux toutes les
corrélations pour identifier des variables redondantes.
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AFC, ACM et AFM

Présentation

L’AFC (Analyse Factorielle des Correspondances) se différencie de I'ACP en
ce sens qu'elle s'applique uniquement a des tableaux de contingence appelés
tableaux de correspondance.

Ainsi, I'AFC peut étre présentée comme une solution pour appliquer une
analyse factorielle a des variables qualitatives.

Dans ce cadre, le concept de similarité entre les lignes et les colonnes est dif-
férent, car la similarité entre deux lignes ou deux colonnes est complétement
symétrique. Deux lignes sont proches I'une de |'autre si elles s'associent aux
colonnes de la méme facon.

Une fois encore on pourra utiliser cette analyse sur des données géogra-
phiques.
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AFC, ACM et AFM

Présentation

Les liens entre AFC et méthodes du x? sont forts, mais I'AFC ne traite pas
la question de la significativité de la liaison et s’intéresse uniquement a la
nature de cette liaison.

L'’ACM (Analyse des Correspondances Multiples) permettra d'étudier plu-
sieurs variables qualitatives.

Dans I'ACM, on retrouve en lignes des individus et en colonnes les variables

qualitatives. Ces problématiques sont alors presque les mémes que celles de
I'ACP.

Attention, I'ACM passera par la production d'un tableau disjonctif complet,
qui s'applique au sens strict du terme a des individus. Ainsi son application
a des tableaux d'information géographique est complexe.

L'’AFM (Analyse Factorielle Multiple) est une généralisation des méthodes
factorielles et pourra s'appliquer a des variables qualitatives et quantitatives.
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM

Exemple AFC
Chimie Medecine Physique  Somme
24 1 8 18 24 80
4 3 2 4 4 18
8 3 11 12 9 53
23 6 7 26 20 93
1 1 6 5 5 19
6 0 2 3 11 23
4 3 5 2 10 27
51 43 8 70 66 257
121 49 140 149 570
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM

Exemple AFC

Eco
Allemagne 1.2
Canada 16.7
Prance 5.7
GB 6.5
Italie 5.3
Japon 0.0
Russie 11.1
USA 16.7
Profil 10.5
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Méthodes exploratoires, synthéti

s et classification

AFC, ACM et AFM

Exemple AFC

H
3
g
Chimie Eco Lit Méd Paix Phys Profil §
TOYER 400
Allemagne 19.8 1.7 16.3 12.9 9.8 16.1 14.0
canada 3.3 5.0 4.1 2.9 2.0 2.7
80
60
40
20
0
Somme 100 100 100 100 100 100 100
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Méthodes exploratoires, synthétiques et classification

AFC, ACM et AFM

Exemple AFC
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Méthodes exploratoires, synthétiques et classification

Présentation
La Classification Ascendante Hiérarchique (CAH) est une méthode de clas-
sification itérative dont le principe est simple, I'objectif étant de regrouper
des objets au sein de classes (les objets qui se ressemblent dans une méme
classe, les objets dissemblables dans des classes différentes) :

@ On commence par calculer la dissimilarité entre les objets (individus).

@ Puis on regroupe les deux objets les plus similaires, créant ainsi une
classe comprenant ces deux objets.

@ On calcule ensuite la dissimilarité entre cette classe et les autres objets
en utilisant un critére d'agrégation. Puis on regroupe les deux objets
ou classes d'objets les plus similaires.

@ On continue ainsi jusqu'a ce que tous les objets soient regroupés.

Attention, cette méthode est sensible a la redondance des variables étudiées.
Par conséquent, il peut étre trés pertinent de I'utiliser sur les coordonnées
d'une analyse factorielle.
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Méthodes exploratoires, synthétiques et classification

CAH

Calcul de dissimilarité

Ki (km) ¥i (km)
Paris 600 2428
Marseille 846 1815
Saint-Etienne 760 2050
Bordeaux 369 1986
Reims 723 2474
Lyaon 794 2087

Distance(euclidienne) = \/(Xl - X2)?+ (Y1 — Y2)?

DiSt(ParisfMarseilIe) = \/(600 - 846)2 + (2428 — ]_815)2 = 660
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Méthodes exploratoires, synthétiques et classification

Calcul de dissimilarité

Distance euclidienne : \/(Xl —X2)2+ (Y1 — Y2)?

De(p__ry = /(600 — 846)2 + (2428 — 1815)2 = 660

Distance de Manhattan : | X1 — Xo | +| Y1 — Y2 |

Dmp_y =| 600 — 846 | + | 2428 — 1815 |= 246 + 613 = 859

Distance de Tchebychev : Max[(X1 — X2); (Y1 — Y2)]

Dt(p_my = Max[(600 — 846); (2428 — 1815)] = Max[246;613] = 613
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Méthodes exploratoires, synthétiques et classification

Calcul de dissimilarité

Variable 1 Variable 2 Variable 3 Variable 4
Objet1 5 2 6 4
Objet 2 2 3 2 4

DiSt(Paris—Marseille) = \/(5 - 2)2 + (2 - 5)2 + (6 - 2)2 + (4 - 4)2
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CAH

hodes exploratoires, synth

ues et clas:

Principe

Paris Marseille Saint-Etienne Bordeaux Reims Lyon
Paris 0 660 410 498 131 392
Marseille 660 0 250 506 670 276
Saint-Etienne 410 250 0 396 425 50
Bordeaux 498 506 396 0 602 436
Reims 131 670 425 602 0 393
Lyon 392 276 50 436 393 0
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Méthodes exploratoires, synthétiques et classification

Paramétres d'application

Parmi les paramétres d'une CAH, en plus de la mesure de dissimilarité, il y
a donc le critére d'agrégation :

@ Le saut minimum retient le minimum des distances entre individus de
C1 et C2. C'est ce critére qu'on a appliqué précédemment.

@ Le saut maximum est la dissimilarité entre les individus de C1 et C2
les plus éloignés.

@ Le lien moyen consiste a calculer la moyenne des distances entre les
individus de C1 et C2.

@ La distance de Ward vise a maximiser |'inertie inter-classe.

Il faut aussi choisir le nombre de classes en tenant notamment compte de la
qualité de la partition qui se mesure a I'aide d'une valeur d'inertie (variance).

Un gros travail consiste a interpréter les caractéristiques des classes créées.

Serge Lhomme Statistique multivariée et Introduction a R 86 /98



Méthodes exploratoires, synthétiques et classification

Dendogramme
T Partition en 2 classes Partition en 3 classes
z |
=
E
£ 7
=
@ ]
p=
]
2 7 Noeuds
Feuilles
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Méthodes exploratoires, synthétiques et classification

Variance et Inertie

La qualité des axes principaux ou des classifications
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Interprétation des résultats obtenus sous R
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Affectation et calcul

R fonctionne un peu comme une calculatrice. Si vous tapez 2 + 3, le logiciel
vous retournera la valeur 5. Néanmoins, on utilisera R davantage comme un
langage de programmation en suivant les principes de |'affectation informa-
tique.

Exemple d’affectation avec R

a<-2
b<-3
c<-a+b

L'affichage des résultats se fera alors en utilisant une fonction : « print() ».
Affichage d'une variable avec R

print(c)
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Introduction a R

Affectation et calcul

R Roui g4-b
Fichier Edition Voir Misc Packeges Fenétres Aide

R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Flatcform: x86_64-wé4-mingw3Z/x64 (64-bit)

R est un logiciel libre livré sans AUCUNE GARANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.

R est un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation()" pour la fagon de le citer dans les publications.

Tapez 'demo()' pour des démonstrations, 'help()' pour 1'aide
en ligne ou 'help.start()' pour obtenir 1'aide au format HTML.
Tapez 'g(}' pour quitter R.

[Sauvegarde de la session précédente restaurée]

> print (c)
11 s
> |

=] F = E DA
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Introduction a R

Les types de données

Il existe de nombreux types de variables dans R.

Les variables de type texte
a <- "Texte" J

Ces variables peuvent étre ordonnées dans une liste (un vecteur) ou dans
plusieurs listes pour former une matrice (un tableau de valeurs).

Les vecteurs et les matrices

b <- c(18, 182, 1.5, 15, 200, 5)

¢ <- matrix(c (18, 182, 1.5, 15, 200, 5), nrow = 2)
d <- matrix(c (18, 182, 1.5, 15, 200, 5), ncol = 2)
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Les types de données

Pour accéder a une valeur ou a un ensemble de valeurs, il faut utiliser les
index des vecteurs ou des matrices.

Acces aux valeurs des vecteurs et des matrices
e <- b[2] + b[3]

f <-c[1,2] + c[2,3]

col <- c[,1]

ligne <- c[1]

Acces avancé aux valeurs des vecteurs et des matrices
e <- b[c(2,4)]

f <- c[(c<15)]

g <- b[2 :5]
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Les types de données

Les data frames permettent de manipuler des tableaux bien structurés. Ce
type de données est particulierement bien adapté aux importations de fichiers
textes.

Les Data Frames

articles <- c( "un", "le", "la", "les")

sujets <- c¢( "mot", "terme", "chose", "images")
dfmots <- data.frame(articles, sujets)

dfmots2 <- data.frame(coll = articles, col2 = sujets)

Appel des valeurs des Data Frames

print(dfmots$sujets)
print(dfmots[,1])
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L'import de données et premieres fonctions

Importation de fichiers textes

MyTexte <- read.table(file="c :/TheData.csv", header=TRUE, sep=",")
MyData <- read.csv(file="c :/TheData.csv", header=TRUE, sep=",")
adresse <- file.choose()

MyData <- read.csv(file=adresse, header=TRUE, sep=",")

Fonctions de base

res <- summary(b)
plot(d[,1].d[,2])
hist(b)

reg <- Im(d[,1] ~d[,2])
res3 <- summary(reg)
t.test(d[,1], d[,2])
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Les bibliotheques

Ce qui constitue la puissance de R, ce sont ses nombreuses bibliothéques
qu'il faut télécharger.

Les librairies cartographiques

library(rgdal)

nuts3 <- readOGR(dsn = adresse, layer = "nuts3", verbose = TRUE)
library(sp)

class(nuts3)

nuts3@proj4string

head(nuts3@data)

plot(nuts3[1, ], col = "#5C99AD", border = " #2A5F70", lwd = 4)
library(rgeos)

europeBuffer <- gBuffer(spgeom = europe, width = 50000)
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Les boucles

Enfin, comme tout langage de programmation, R permet de répéter les
mémes instructions plusieurs fois en changeant seulement quelques para-

metres. Ce sont les boucles. Ces boucles peuvent alors permettre d'effectuer
des tests. Ce sont par exemple les Si.

Les boucles
for (iin 1:10) {
print(i)
}
for (iin 1:10) {
if (i>5&i<8){
print(i)

}
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